(a)
The direction in which the wave is travelling.
(a)

Answer to Problem 67PQ
The direction in which the wave is travelling is
Explanation of Solution
Write the expression for magnetic field of
Here,
Compare equation (I) with given equation of magnetic field.
Conclusion:
Therefore, the direction in which the wave is travelling is
(b)
The wave number, wave-length and frequency of the electro-magnetic wave.
(b)

Answer to Problem 67PQ
The wave number is
Explanation of Solution
Write the expression for wave-length of the electro-magnetic wave.
Here,
Write the expression for frequency of radiation.
Here,
Conclusion:
Compare equation (I) with given equation of magnetic field.
The wave number is
Substitute
Substitute
Therefore, the wave number is
(c)
The expression for electric field of electromagnetic wave
(c)

Answer to Problem 67PQ
The expression for electric field of electromagnetic wave is given below.
Explanation of Solution
Write the expression for maximum value of electric field of
Write the expression for electric field of electromagnetic wave.
Write the expression for angular frequency.
Conclusion:
Substitute
Substitute
Substitute
Therefore, the expression for electric field of electromagnetic wave is given below.
Want to see more full solutions like this?
Chapter 34 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





