At the time they retire, a couple has $ 200 , 000 in an account that pays 8.4 % compounded monthly. (A) If the couple decides to withdraw equal monthly payments for 10 years, at the end of which time the account will have a zero balance, how much should the couple withdraw each month? (B) If the couple decides to withdraw $ 3 , 000 a month until the balance in the account is zero, how many withdrawals can the couple make?
At the time they retire, a couple has $ 200 , 000 in an account that pays 8.4 % compounded monthly. (A) If the couple decides to withdraw equal monthly payments for 10 years, at the end of which time the account will have a zero balance, how much should the couple withdraw each month? (B) If the couple decides to withdraw $ 3 , 000 a month until the balance in the account is zero, how many withdrawals can the couple make?
Solution Summary: The author calculates the monthly withdrawal if a couple withdraws equal monthly payment for 10 years at the end of which, the account has zero balance.
At the time they retire, a couple has
$
200
,
000
in an account that pays
8.4
%
compounded monthly.
(A) If the couple decides to withdraw equal monthly payments for
10
years, at the end of which time the account will have a zero balance, how much should the couple withdraw each month?
(B) If the couple decides to withdraw
$
3
,
000
a month until the balance in the account is zero, how many withdrawals can the couple make?
these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.
Q1) Classify the following statements as a true or false statements
a. Any ring with identity is a finitely generated right R module.-
b. An ideal 22 is small ideal in Z
c. A nontrivial direct summand of a module cannot be large or small submodule
d. The sum of a finite family of small submodules of a module M is small in M
A module M 0 is called directly indecomposable if and only if 0 and M are
the only direct summands of M
f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct-
summand in M
& Z₂ contains no minimal submodules
h. Qz is a finitely generated module
i. Every divisible Z-module is injective
j. Every free module is a projective module
Q4) Give an example and explain your claim in each case
a) A module M which has two composition senes 7
b) A free subset of a modale
c) A free module
24
d) A module contains a direct summand submodule 7,
e) A short exact sequence of modules 74.
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY