
(a)
The energy of the ground state
(a)

Answer to Problem 41P
The energy of the ground state
Explanation of Solution
Given:
The length of one-dimensional box is
Formula used:
The expression for energy of ground state is given by,
The expression for energy of nth states is given by,
Calculation:
The energy of ground stateis calculated as,
Solve further as,
The energy of first excited state is calculated as,
The energy of second excited state is calculated as,
Solve further as,
The energy level diagram of the system is shown in Figure 1.
Figure 1
Conclusion:
Therefore, the energy of the ground state
(b)
The wavelength of
(b)

Answer to Problem 41P
The wavelength of electromagnetic radiation emittedis
Explanation of Solution
Given:
The neutron makes transition from
Formula used:
The expression for wavelength of electromagnetic radiation emitted is given by,
Calculation:
The wavelength of electromagnetic radiation emitted is calculated as,
Solve further as,
Conclusion:
Therefore, the wavelength of electromagnetic radiation emitted is
(c)
The wavelength of electromagnetic radiation emitted.
(c)

Answer to Problem 41P
The wavelength of electromagnetic radiation emitted is
Explanation of Solution
Given:
The neutron makes transition from
Formula used:
The expression for wavelength of electromagnetic radiation emitted is given by,
Calculation:
The wavelength of electromagnetic radiation emitted is calculated as,
Solve further as,
Conclusion:
Therefore, the wavelength of electromagnetic radiation emitted is
(d)
The wavelength of electromagnetic radiation emitted.
(d)

Answer to Problem 41P
The wavelength of electromagnetic radiation emitted is
Explanation of Solution
Given:
The neutron makes transition from
Formula used:
The expression for wavelength of electromagnetic radiation emitted is given by,
Calculation:
The wavelength of electromagnetic radiation emitted is calculated as,
Solve further as,
Conclusion:
Therefore, the wavelength of electromagnetic radiation emitted is
Want to see more full solutions like this?
Chapter 34 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- 9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward1). Determine the equivalent capacitance of the combination shown when C = 12 pF. +11/20 2C C Carrow_forward3). When a capacitor has a charge of magnitude 80 μC on each plate the potential difference across the plates is 16 V. How much energy is stored in this capacitor when the potential difference across its plates is 42 V? a. 1.0 mJ b. 4.4 mJ c. 3.2 mJ d. 1.4 mJ e. 1.7 mJarrow_forward
- 5). A conductor of radius r, length & and resistivity p has resistance R. It is melted down and formed into a new conductor, also cylindrical, with one fourth the length of the original conductor. The resistance of the new conductor is a. 1 R 161 b. 1 R C. R d. 4R e. 16Rarrow_forward8). Determine the magnitude and sense (direction) of the current in the 10-Q2 resistor when I = 1.8 A. 30 V L 50 V 10 Ω 20 Ω a. 1.6 A right to left b. 1.6 A left to right C. 1.2 A right to left d. 1.2 A left to right e. 1.8 A left to right R PGarrow_forward7). Determine the current in the 10-V emf. 5.0 0 w 10 V 5.0 0 15 V 5.0 Ω a. 2.3 A b. 2.7 A c. 1.3 A d. 0.30 A e. 2.5 Aarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





