EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Chapter 34, Problem 34.2CQ
To determine
The reason for
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A communications satellite orbiting the earth has solar panels that completely absorb all sunlight incident upon them. The total area A of the panel is 10 m2. (A) the intensity of the suns radiation incident upon the earth is about 1.4 kW/m2. What is the total power asborded by the panels? (B) what is the force F on the panels exerted by radiation pressure from the sunlight?
A space probe which is a distance of 2.6×1010 mm from a star measures the total intensity of electromagnetic radiation from the star to be 5300 W/m^2 .
If the star radiates uniformly in all directions, what is its total average power output?
What is the radiation pressure 1.5 m away from a 500 W lightbulb? Assume that the surface on which the pressure is exerted faces the bulb and is perfectly absorbing and that the bulb radiates uniformly in all directions
Chapter 34 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 34 - Prob. 34.1QQCh. 34 - What is the phase difference between the...Ch. 34 - Prob. 34.3QQCh. 34 - Prob. 34.4QQCh. 34 - If the antenna in Figure 33.11 represents the...Ch. 34 - Prob. 34.6QQCh. 34 - A radio wave of frequency on the order of 105 Hz...Ch. 34 - A spherical interplanetary grain of dust of radius...Ch. 34 - Prob. 34.2OQCh. 34 - A typical microwave oven operates at a frequency...
Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Similar questions
- Why is t1 radiation pressure of an electromagnetic wave on a perfectly reflecting surface twice as large as the pressure on a perfectly absorbing surface?arrow_forwardIf the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forwardSuppose the magnetic field of an electromagnetic wave is given by B = (1.5 1010) sin (kx t) T. a. What is the maximum energy density of the magnetic field of this wave? b. What is maximum energy density of the electric field?arrow_forward
- The electric field of an electromagnetic wave traveling in vacuum is described by the following wave function: E =(5.00V/m)cos[kx(6.00109s1)t+0.40] j where k is the wavenumber in rad/m, x is in m, t s in Find the following quantities: (a) amplitude (b) frequency (c) wavelength (d) the direction of the travel of the wave (e) the associated magnetic field wavearrow_forwardA plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forwardWhat is the intensity of an electromagnetic wave with a peak electric field strength of 125 Vim?arrow_forward
- Can the human body detect electromagnetic radiation that is outside the visible region of the spectrum?arrow_forwardA radio station broadcasts at a frequency of 760 kHz. At a receiver some distance from the antenna, the maximum magnetic field of the electromagnetic wave detected is 2.151011T . (a) What is the maximum electric field? (b) What is the wavelength of the electromagnetic wave?arrow_forwardSuppose a source of electromagnetic waves radiates uniformly in all directions in empty space where there are no absorption or interference effects. (a) Show that the intensity is inversely proportional to r2, distance from the source squared. (b) Show that the magnitudes of the electric and magnetic fields are inversely proportional to r.arrow_forward
- Figure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardA uniform circular disk of mass m = 24.0 g and radius r = 40.0 cm hangs vertically from a fixed, frictionless, horizontal hinge at a point on its circumference as shown in Figure P34.39a. A beam of electromagnetic radiation with intensity 10.0 MW/m2 is incident on the disk, in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk rotate. Assuming the radiation is always perpendicular to the surface of the disk, find the angle through which the disk rotates from the vertical as it reaches its new equilibrium position shown in Figure 34.39b. Figure 34.39arrow_forwardIn an apparatus such as the one in Figure 21.22. suppose the black disk is replaced by one with half the radius. Which of the following are different after the disk is replaced? (a) radiation pressure on the disk (b) radiation force on the disk (c) radiation momentum delivered to the disk in a given time interval Figure 21.22 An .apparatus for measuring the radiation pressure of light. In practice, the system is contained in a high vacuum.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning