Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781337026345
Author: Katz
Publisher: Cengage
Question
Book Icon
Chapter 34, Problem 32PQ
To determine

The equations for the electric field and the magnetic field for an electromagnetic wave.

Expert Solution & Answer
Check Mark

Answer to Problem 32PQ

The equation for the electric field of the electromagnetic wave is given by:

    E=(0.050V/m)sin[(1.132×107m1)x(3.4×1015rad/s)t]k^.

The equation for the magnetic field of the electromagnetic wave is given by:

    B=(1.67×1010T)sin[(1.132×107m1)x(3.4×1015rad/s)t](j^).

Explanation of Solution

Write the expression for the electric field of an electromagnetic wave.

    E=Emaxsin(kxωt)k^                                                                         (I)

Here, Emax is the amplitude of the electric field, k is the propagation constant and ω is the angular frequency of the wave.

Write the expression for the magnetic field of an electromagnetic wave.

    B=Bmaxsin(kxωt)(j^)                                                                  (II)

Here, Bmax is the amplitude of the magnetic field, k is the propagation constant and ω is the angular frequency of the wave.

Write the expression for the propagation constant.

    k=2πλ                                                                                             (III)

Here, k is the propagation constant and λ is the wavelength.

Write the expression for the angular frequency of the wave.

    ω=2πcλ                                                                                          (IV)

Here, ω is the angular frequency, c is the speed of light and f is the frequency of the wave.

Write the expression for the amplitude of the magnetic field in terms of magnitude of electric field.

    Bmax=Emaxc                                                                                          (V)

Conclusion:

Substitute 555nm for λ in (III) to find k.

    k=2π(555nm×109m1nm)=1.132×107m1

Substitute, 3×108m/s for c and 555nm for λ in (IV)to find ω.

    ω=2π3×108m/s(555nm×109m11nm)=3.4×1015rad/s

Substitute 1.132×107m1 for k , 3.4×1015rad/s for ω and 0.050V/m for Emax in equation(I) to find E.

    E=(0.050V/m)sin((1.132×107m1)x(3.4×1015rad/s)t)k^.

Substitute 3×108m/s for c and 0.050V/m for Emax in (V) to find Bmax.

    Bmax=0.050V/m3×108m/s=1.67×1010T

Substitute 1.132×107m1 for k , 3.4×1015rad/s for ω and 1.67×1010T for Bmax in equation(II) to find B.

    B=(1.67×1010T)sin[(1.132×107m1)x(3.4×1015rad/s)t](j^).

Thus, the equation for the electric field of the electromagnetic wave is given by:

    E=(0.050V/m)sin[(1.132×107m1)x(3.4×1015rad/s)t]k^.

The equation for the magnetic field of the electromagnetic wave is given by:

    B=(1.67×1010T)sin[(1.132×107m1)x(3.4×1015rad/s)t](j^).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2 聯梧桐紀 PAGENIN ERA 5 7 DOG FAMILY puppies C01: Physical Quantities, Units and Measurements 4 A student wanted to measure the diameter of a cylindrical water bottle. Which of the following gives the most accurate measurement? A B CD Take three measurements of the diameter using a rule before finding the average. Take three measurements of the diameter using a digital micrometer screw gauge, resetting to zero before every measurement before finding the average. Take three measurements of the diameter using the digital calipers, resetting to zero before every measurement before finding the average. Take three measurements of the diameter using the digital calipers without resetting to zero before every measurement before finding the average. The resultant force FR acting on an object is given by, FR = ma, where m is the mass of the object in kg and a is the acceleration of the object in m/s². Which unit is equivalent to the unit for force? A B с D kg ms² kg m²s kg m/s² kg m²/s² adt to…
C01: Physical Quantities, Units and Measurements 10 A student uses a rule to measure a thin piece of wire. wire 0 1 cm 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 (a) State two errors in the student's measurement of the length of wire. [2] The student records the length of the wire as 12.8 cm. [E] The student is asked to measure the thickness of the wire using a pencil and the same rule. Suggest how this can be done as accurately as possible. [4] (b) The student finds out that the density of the wire is 2.7 g/cm³. Express 2.7 g/cm³ in kg/m³. [2] to V emulov or worl? гавтоха [E11 The length of a sheet of plastic is measured using a 15 cm rule. eq 8 5 Imm 1 2 سيلينا 3 3 5 7 8 10 11 12 13 14 L ins 15 sem of beiupe stipib e elun olfastq e riliw bei inebulz A H com al Jari Inemundeni or ezoori (s) re the sheet of plastic
tion v more m C01: Physical Quantities, Units and Measurements 8 The following shows a pencil. (a) pencil sharpened section Describe how you would use a piece of string and a rule to determine the circumference c of the unsharpened section of the pencil. [3] nd pupp e e E (b) The student's value for the circumference c is 2.5 cm. Suggest a source of error in determining the circumference of the pencil. [1] ntit ble Ec et (c) Show the volume V of the unsharpened section of the pencil is V = c²x [3] ΑΠ 55 sn ar 2 72 C: or n/ el D a 7 9 (d) Express the volume VE of the sharpened section of the pencil in terms of c and y. pilasi to leeries to rignal on [3] State any assumptions made. lau besser A student is required to measure the thickness of a ream of 500 sheets of A4 size paper. He is supplied with a plastic rule, a digital micrometer screw gauge and a pair of digital calipers. (a) Choose the instrument that is most suitable to measure the thickness of the ream of paper. Give two…

Chapter 34 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 34 - Prob. 4PQCh. 34 - A solenoid with n turns per unit length has radius...Ch. 34 - Prob. 6PQCh. 34 - Prob. 7PQCh. 34 - Prob. 8PQCh. 34 - Prob. 9PQCh. 34 - Prob. 10PQCh. 34 - Prob. 11PQCh. 34 - Prob. 12PQCh. 34 - Prob. 13PQCh. 34 - Prob. 14PQCh. 34 - Prob. 15PQCh. 34 - Prob. 16PQCh. 34 - Prob. 17PQCh. 34 - Prob. 18PQCh. 34 - Prob. 19PQCh. 34 - Prob. 20PQCh. 34 - Ultraviolet (UV) radiation is a part of the...Ch. 34 - Prob. 22PQCh. 34 - What is the frequency of the blue-violet light of...Ch. 34 - Prob. 24PQCh. 34 - Prob. 25PQCh. 34 - Prob. 26PQCh. 34 - WGVU-AM is a radio station that serves the Grand...Ch. 34 - Suppose the magnetic field of an electromagnetic...Ch. 34 - Prob. 29PQCh. 34 - Prob. 30PQCh. 34 - Prob. 31PQCh. 34 - Prob. 32PQCh. 34 - Prob. 33PQCh. 34 - Prob. 34PQCh. 34 - Prob. 35PQCh. 34 - Prob. 36PQCh. 34 - Prob. 37PQCh. 34 - Prob. 38PQCh. 34 - Prob. 39PQCh. 34 - Prob. 40PQCh. 34 - Prob. 41PQCh. 34 - Prob. 42PQCh. 34 - Prob. 43PQCh. 34 - Prob. 44PQCh. 34 - Prob. 45PQCh. 34 - Prob. 46PQCh. 34 - Prob. 47PQCh. 34 - Prob. 48PQCh. 34 - Prob. 49PQCh. 34 - Prob. 50PQCh. 34 - Prob. 51PQCh. 34 - Prob. 52PQCh. 34 - Optical tweezers use light from a laser to move...Ch. 34 - Prob. 54PQCh. 34 - Prob. 55PQCh. 34 - Prob. 57PQCh. 34 - Prob. 58PQCh. 34 - Prob. 59PQCh. 34 - Prob. 60PQCh. 34 - Some unpolarized light has an intensity of 1365...Ch. 34 - Prob. 62PQCh. 34 - Prob. 63PQCh. 34 - Prob. 64PQCh. 34 - Unpolarized light passes through three polarizing...Ch. 34 - The average EarthSun distance is 1.00 astronomical...Ch. 34 - Prob. 67PQCh. 34 - Prob. 68PQCh. 34 - Prob. 69PQCh. 34 - Prob. 70PQCh. 34 - Prob. 71PQCh. 34 - Prob. 72PQCh. 34 - Prob. 73PQCh. 34 - Prob. 74PQCh. 34 - CASE STUDY In Example 34.6 (page 1111), we...Ch. 34 - Prob. 76PQCh. 34 - Prob. 77PQCh. 34 - Prob. 78PQCh. 34 - Prob. 79PQCh. 34 - Prob. 80PQCh. 34 - Prob. 81PQCh. 34 - Prob. 82PQCh. 34 - Prob. 83PQCh. 34 - In Section 34-1, we summarized classical...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill