Concept explainers
(a)
The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and outside air.
(a)
Answer to Problem 28P
Explanation of Solution
Given info: The condition for light ray travelling between air and a diamond is shown below.
Figure (I)
From Snell’s law of refraction to air-diamond interface to find the critical angle is,
Here,
The value of
Substitute 1 for
Thus, the critical angle of refraction at air-diamond interface is
Conclusion:
Therefore, the critical angle of refraction at air-diamond interface is
(b)
To show: The light travelling towards point
(b)
Answer to Problem 28P
Explanation of Solution
Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).
The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and outside air is
Conclusion:
Therefore, the angle of incidence is more than the critical angle all light is reflected from point P.
(c)
The critical angle for total internal reflection for light in the diamond when the diamond is immersed in the water.
(c)
Answer to Problem 28P
Explanation of Solution
Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).
From Snell’s law of refraction to water-diamond interface to find the critical angle is,
Here,
The value of
Substitute 1 for
Thus, the critical angle of incidence at water-diamond interface is
Conclusion:
Therefore, the critical angle of incidence at water-diamond interface is
(d)
The ray incident at point P
undergoes total internal reflection or not when diamond is immersed in the water.
(d)
Answer to Problem 28P
Explanation of Solution
Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).
The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and water is
Thus, the light undergoes total internal reflection at
Conclusion:
Therefore, the light undergoes total internal reflection at
(e)
The direction in which the diamond is rotated such that the light at a point P
will exit the diamond.
(e)
Answer to Problem 28P
Explanation of Solution
Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).
The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and water is
The light will exit from the diamond only when the incident angle is less than the critical angle. So, to reduce the angle of incidence the diamond should be rotated in clockwise direction on the axis perpendicular to the plane of paper.
Thus, the light will exit at point
Conclusion:
Therefore, the light will exit at point
(f)
The angle of rotation at which the light first exit the diamond at point P
.
(f)
Answer to Problem 28P
Explanation of Solution
Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).
Let the angle is rotated clockwise by
Apply Snell’s law at the water-diamond interface.
The condition of the situation is shown below.
Figure (II)
The angle at the vertex
The requirement is that the angle of incidence
Apply Snell’s law and find angle
Substitute
Thus, the diamond is rotated by
Conclusion:
Therefore, the diamond is rotated by
Want to see more full solutions like this?
Chapter 34 Solutions
PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning