
DIFFERENTIAL EQUATIONS-ACCESS
4th Edition
ISBN: 9781133109044
Author: Blanchard, Devaney, and Hall
Publisher: ACME
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.3, Problem 9E
In Exercises
9. The initial-value problems in Exercise 11, Section 3.2
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
(10) (16 points) Let R>0. Consider the truncated sphere S given as
x² + y² + (z = √15R)² = R², z ≥0.
where F(x, y, z) = −yi + xj .
(a) (8 points) Consider the vector field
V (x, y, z) = (▼ × F)(x, y, z)
Think of S as a hot-air balloon where the vector field V is the velocity vector
field measuring the hot gasses escaping through the porous surface S. The flux
of V across S gives the volume flow rate of the gasses through S. Calculate
this flux.
Hint: Parametrize the boundary OS. Then use Stokes' Theorem.
(b) (8 points) Calculate the surface area of the balloon. To calculate the surface
area, do the following:
Translate the balloon surface S by the vector (-15)k. The translated
surface, call it S+ is part of the sphere x² + y²+z² = R².
Why do S and S+ have the same area?
⚫ Calculate the area of S+. What is the natural spherical parametrization
of S+?
(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve
starting from the point (1,0,1).
Chapter 3 Solutions
DIFFERENTIAL EQUATIONS-ACCESS
Ch. 3.1 - Recall the model dx dt=ax+by dy dt=cx+dy for...Ch. 3.1 - In Exercises 57 , rewrite the specified linear...Ch. 3.1 - In Exercises 57 , rewrite the specified linear...Ch. 3.1 - In Exercises 57 , rewrite the specified linear...Ch. 3.1 - In Exercises 89 , rewrite the specified linear...Ch. 3.1 - For the linear systems given in Exercises 1013,...Ch. 3.1 - For the linear systems given in Exercises 1013,...Ch. 3.1 - Prob. 13ECh. 3.1 - Let A=(abcd) be a nonzero matrix. That is, suppose...Ch. 3.1 - The general form of a linear, homogeneous,...
Ch. 3.1 - Convert the third-order differential equation $...Ch. 3.1 - Consider the linear system dYdt=(2011)Y Show that...Ch. 3.1 - Consider the linear system dYdt=(1 113)Y (a)Show...Ch. 3.1 - A=( 2 33 2) Functions: Y1(t)=e2t(cos3t,sin3t)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises 110 (a) compute the eigenvalues; (b)...Ch. 3.2 - In Exercises $1-10$ (a) compute the eigenvalues;...Ch. 3.2 - Solve the initial-value problem dx dt=2x2y dy...Ch. 3.2 - Solve the initial-value problem dYdt=( 412...Ch. 3.2 - Show that a is the only eigenvalue and that every...Ch. 3.2 - A matrix of the form A=(ab0d) is called upper...Ch. 3.2 - A matrix of the form B=(abbd) is called symmetric....Ch. 3.2 - Consider the second-order equation...Ch. 3.2 - For the harmonic oscillator with mass m=1, spring...Ch. 3.2 - In Exercises 21-24, we return to Exercises 1-4 in...Ch. 3.3 - In Exercises 18, we refer to linear systems from...Ch. 3.3 - In Exercises 18, we refer to linear systems from...Ch. 3.3 - In Exercises 18, we refer to linear systems from...Ch. 3.3 - In Exercises 1-8, we refer to linear systems from...Ch. 3.3 - In Exercises 912, we refer to initial-value...Ch. 3.3 - In Exercises 13-16, we refer to the second-order...Ch. 3.3 - The slope field for the system dx dt=2x+12y dy...Ch. 3.3 - Consider the linear system dYdt=( 2102)Y $ (a)...Ch. 3.4 - Suppose that the 22 matrix A has =1+3i as an...Ch. 3.4 - Suppose that the 22 matrix B has =2+5i as an...Ch. 3.4 - In Exercises 3-8, each linear system has complex...Ch. 3.4 - In Exercises 3-8, each linear system has complex...Ch. 3.4 - In Exercises 3-8, each linear system has complex...Ch. 3.4 - In Exercises 3-8, each linear system has complex...Ch. 3.4 - In Exercises 3-8, each linear system has complex...Ch. 3.4 - In Exercises 9-14, the linear systems are the same...Ch. 3.4 - In Exercises 9-14, the linear systems are the same...Ch. 3.4 - In Exercises 9-14, the linear systems are the same...Ch. 3.5 - In Exercises 1-4, each of the linear systems has...Ch. 3.5 - In Exercises 5-8, the linear systems are the same...Ch. 3.5 - Given a quadratic 2++, what condition on and ...Ch. 3.6 - In Exercises 16, find the general solution (in...Ch. 3.6 - In Exercises 16, find the general solution (in...Ch. 3.6 - In Exercises 16, find the general solution (in...Ch. 3.6 - In Exercises 712, find the solution of the given...Ch. 3.6 - In Exercises 712, find the solution of the given...Ch. 3.6 - In Exercises 712, find the solution of the given...Ch. 3.6 - In Exercises 712 , find the solution of the given...Ch. 3.6 - In Exercises 1320, consider harmonic oscillators...Ch. 3.6 - In Exercises 13-20, consider harmonic oscillators...Ch. 3.6 - In Exercises 1320, consider harmonic oscillators...Ch. 3.7 - In Exercises 27 , we consider the one-parameter...Ch. 3.7 - In Exercises 2-7, we consider the one-parameter...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward(8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward
- (4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward(2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward
- Answer the following questions related to the following matrix A = 3 ³).arrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forward
- Determine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forward13' - 3π 2 < u <- π and tan v 5 14) Find the exact value given that sin u = a) sin(u-v) b) cos(u+v) c) tan(u-v) d) cos(2u) == √³, 1 < v < π.arrow_forward13) Find all solutions in [0, 2π): sec²x + 6 tan x + 4 = 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY