EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 86P
To determine
The optimum size of the pinhole.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The normal human eye has maximum visual acuity with a pupil size of about 3 mm. For larger pupils, acuity decreases due to increasing aberrations; for smaller pupils, acuity decreases due to increasing effects of diffraction. Ifyour pupil diameter is 2.0 mm, as it would be in fairly bright light, what is the smallest diameter circle that you can barely see as a circle, rather than just a dot, if the circle is at your near point, 25 cm from your eye? Assume the light’s wavelength in air is 600 nm and the index of refraction inside theeye is 1.33.
Why is optical density greater than 1.0 considered inaccurate? What should be done?
Under dark conditions, the maximum diameter of a human pupil is 7.0 mm, where an owl's pupil may be 8.5 mm. Assume a human can
optically resolve two closely spaced objects at a distance r. (a) By what factor could the distance between the two objects be reduced
and still have the owl optically resolve them at the same distance r? (b) If the distance between the two objects remains fixed, by what
factor could r be increased and still have the owl optically resolve the two objects? In both (a) and (b), assume the wavelength of the
light remains constant.
(a) Number i
Units
(b) Number i
Units
Chapter 33 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10P
Ch. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Prob. 13PCh. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - Prob. 42PCh. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - Prob. 45PCh. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - Prob. 49PCh. 33 - Prob. 50PCh. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57PCh. 33 - Prob. 58PCh. 33 - Prob. 59PCh. 33 - Prob. 60PCh. 33 - Prob. 61PCh. 33 - Prob. 62PCh. 33 - Prob. 63PCh. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - Prob. 66PCh. 33 - Prob. 67PCh. 33 - Prob. 68PCh. 33 - Prob. 69PCh. 33 - Prob. 70PCh. 33 - Prob. 71PCh. 33 - Prob. 72PCh. 33 - Prob. 73PCh. 33 - Prob. 74PCh. 33 - Prob. 75PCh. 33 - Prob. 76PCh. 33 - Prob. 77PCh. 33 - Prob. 78PCh. 33 - Prob. 79PCh. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - Prob. 83PCh. 33 - Prob. 84PCh. 33 - Prob. 85PCh. 33 - Prob. 86PCh. 33 - Prob. 87P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A camera uses a lens with aperture 2.0 cm. What is the angular resolution of a photograph taken at 700 nm wavelength? Can it resolve the millimeter markings of a ruler placed 35 m away?arrow_forwardIf a microscope can accept light from objects at angles as large as =70 , what is the smallest structure that can be resolved when illuminated with light of wavelength 500 nm and (a) the specimen is in air? (b) When the specimen is immersed in oil, with index of refraction of 1.52?arrow_forwardSuppose a certain person’s visual acuity is such that he can see objects clearly that form an image 4.00mhigh on his retina. What is the maximum distance at which he can read the 75.0-cm-high letters on the side of an airplane?arrow_forward
- A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the moon. (a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the moon, assuming a lunar distance of 3.84108 m?arrow_forwardA spy satellite orbits Earth at a height of 180 km. What is the minimum diameter of the objective lens in a telescope that must be used to resolve columns of troops marching 2.0 m apart? Assume =550 nm.arrow_forwardWhat is the smallest thing we can see? O smallest object that we can process with our eyes is limited to the size of the photoreceptor cells in the retina. In order for us to to distinguish any detail in an object, its image cannot be smaller cannot be smaller than a single retinal cell. Although the size depends on the type of cell (cone or rod), a diameter of of a few microns (mm) is common near the center of the eye. We should model the eye as a sphere 2.50 cm in diameter with a single slender lens in front and the retina behind, with photoreceptor cells 5.0 mm in diameter. (a) What is the smallest object object that you can perceive at a point near 25 cm? What angle is subtended by this object in the eye? Express your answer in units of minutes (1° 60 min) and compare it with the typical experimental value of about 1.0 min. (Note: there are other limitations, but we will ignore them here).arrow_forward
- Numerical Aperture of a Cladless Fiber. Determine the numerical aperture and the accep- 1.46 and the cladding tance angle of an optical fiber if the refractive index of the core is n₁ is stripped out (replaced with air no ≈ 1). £ m. القلب 1arrow_forwardFor light of wavelength 589 nm, calculate the critical anglesfor the following substances when the quartz, polystyrene,and sodium chloride are surrounded by water.arrow_forwardMicrotubules are structures in cells that maintain cell shape and facilitate the movement of molecules within the cell. They are long, hollow cylinders with a diameter of about 25 nm. It is possible to incorporate fluorescentmolecules into microtubules; when illuminated by ultraviolet light, the fluorescent molecules emit visible light that can be imaged by the optical system of a microscope. If the emitted light has a wavelength of 500 nm and the NA of the microscope objective is 1.4, can a biologist looking through the microscope tell whether she is looking at a single microtubule or at two microtubules lying side by side?arrow_forward
- Birds of prey have keen eyesight. If the pupil of an eagle has diameter of 10 mm, atwhat altitude could it fly and still see clearly a mouse 7 cm long? Considerλ=550 nm.arrow_forwardEstimate the linear separation (in kilometers) of two objects at a distance of 1.9 × 10° km that can just be resolved by an observer on Earth (a) using the naked eye and (b) using a telescope with a 7.4-m diameter mirror. Use the following data: diameter of pupil = 5.0 mm; wavelength of light = 550 nm. %3D (a) Number i 2.5E8 Units km (b) Number i 1.7E5 Units kmarrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY