
(a)
The current in the circuit as a function of time.
(a)

Answer to Problem 72AP
The current in the circuit as a function of time is
Explanation of Solution
The circuit in which capacitor and inductor are short circuited and both the switch are closed is as shown below.
Figure-(1)
Write the expression to obtain the time varying voltage source.
Here,
Write the expression to obtain the current in the circuit as a function of time.
Here,
Substitute
Conclusion:
Therefore, the current in the circuit as a function of time is
(b)
The power delivered to the circuit.
(b)

Answer to Problem 72AP
The power delivered to the circuit is
Explanation of Solution
Write the expression to obtain the power delivered to the circuit.
Here,
Substitute
Conclusion:
Therefore, the power delivered to the circuit is
(c)
The current in the circuit as function of time if only switch
(c)

Answer to Problem 72AP
The current in the circuit as function of time if only switch
Explanation of Solution
The circuit in which switch
Figure-(2)
In case of inductor circuit, the phase difference between the current and voltage is
Write the expression to obtain the time varying voltage source in case
Here,
Write the expression to obtain the impedance in the circuit.
Here,
Write the expression to obtain the current in the circuit as a function of time.
Here,
Substitute
Conclusion:
Therefore, the current in the circuit as function of time if only switch
(d)
The capacitance of the capacitor when both the switches are closed and the current and voltage are in phase.
(d)

Answer to Problem 72AP
The capacitance of the capacitor when both the switches are open and the current and voltage are in phase is
Explanation of Solution
The circuit in which both the switches are open as shown in the figure below.
Figure-(3)
Write the expression obtain the impendence of the inductor.
Here,
Write the expression obtain the impendence of the capacitor.
Here,
When the current and voltage in the circuit are in phase, than the impendence of the inductor and the capacitor are equal.
Write the expression to obtain the relation the capacitance of the capacitor.
Here,
Substitute
Conclusion:
Therefore, the capacitance of the capacitor when both the switches are open and the current and voltage are in phase is
(e)
The impendence of the circuit when both the switches are open.
(e)

Answer to Problem 72AP
The impendence of the circuit when both the switches are open is
Explanation of Solution
Write the expression when both the switches are open.
Here,
Write the expression to obtain the impendence of the circuit.
Here,
Substitute
Conclusion:
Therefore, the impendence of the circuit when both the switches are open is
(f)
The maximum energy stored in the capacitor during the oscillations.
(f)

Answer to Problem 72AP
The maximum energy stored in the capacitor during the oscillations is
Explanation of Solution
Write the expression to obtain the voltage across the capacitor.
Here,
Substitute
Write the expression to obtain the maximum energy stored in the capacitor.
Here,
Substitute
Conclusion:
Therefore, the maximum energy stored in the capacitor during the oscillations is
(g)
The maximum energy stored in the inductor during the oscillations.
(g)

Answer to Problem 72AP
The maximum energy stored in the inductor during the oscillations is
Explanation of Solution
Write the expression to obtain the maximum energy stored in the inductor.
Here,
Substitute
Conclusion:
Therefore, the maximum energy stored in the inductor during the oscillations is
(h)
The phase difference between the current and the voltage when frequency of the voltage source is doubled.
(h)

Answer to Problem 72AP
The phase difference between the current and the voltage when frequency of the voltage source is doubled is
Explanation of Solution
Write the expression to obtain the phase difference between the current and voltage.
Here,
Substitute
As the frequency of the voltage source is doubled.
Substitute
Conclusion:
Therefore, the phase difference between the current and the voltage when frequency of the voltage source is doubled is
(i)
The frequency that makes the inductance reactance one-half the capacitive reactance.
(i)

Answer to Problem 72AP
The frequency that makes the inductance reactance one-half the capacitive reactance is
Explanation of Solution
Write the expression to obtain the frequency that makes the inductance reactance one-half the capacitive reactance.
Here,
Substitute
Conclusion:
Therefore, the frequency that makes the inductance reactance one-half the capacitive reactance is
Want to see more full solutions like this?
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- In the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. R Pout (a) Calculate the maximum value of the emf induced between the ends of the conductor. 1.77 v (b) What is the value of the average induced emf for each complete rotation? 0 v (c) How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? (Select all that apply.) The value in part (a) would increase. The value in part (a) would remain the same. The value in part (a) would decrease. The value in part (b) would increase. The value in part (b) would remain the same. The value in part (b) would decrease. × (d) Sketch the emf versus time when the field is as drawn in the figure. Choose File No file chosen This answer has not been graded yet. (e) Sketch the emf…arrow_forwardPortfolio Problem 2. A particle of mass m slides in a straight line (say along i) on a surface, with initial position x ©0 and initial velocity Vo > 0 at t = 0. The = particle is subject to a constant force F = -mai, with a > 0. While sliding on the surface, the particle is also subject to a friction force v Ff = -m fo = −m fov, with fo > 0, i.e., the friction force has constant magnitude mfo and is always opposed to the motion. We also assume fo 0, and solve it to find v(t) and x(t). How long does it take for the particle to come to a stop? How far does it travel? (b) After coming to a stop, the particle starts sliding backwards with negative velocity. Write the equation of motion in this case, and solve it to find the time at which the particle returns to the original position, x = 0. Show that the final speed at x 0 is smaller than Vo. = Express all your answers in terms of a, fo and Vo.arrow_forward= Portfolio Problem 1. A particle of mass m is dropped (i.e., falls down with zero initial velocity) at time t 0 from height h. If the particle is subject to gravitational acceleration only, i.e., a = −gk, determine its speed as it hits the ground by solving explicitly the expressions for its velocity and position. Next, verify your result using dimensional analysis, assuming that the general relation is of the form v = khag³m, where k is a dimensionless constant.arrow_forward
- Review Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow- green fringe? m = 3 m = 3 m= 0 m = 3 m = 3 Fringes on observation screenarrow_forwardIn the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. In this illustration, a wire extends straight to the right from point A, then curves up and around in a semicircle of radius R. On the right side of the semicircle, the wire continues straight to the right to point C. The wire lies in the plane of the page, in a region of no magnetic field. Directly below the axis A C is a region of uniform magnetic field pointing out of the page, vector Bout. If viewed from the right, the wire can rotate counterclockwise, so that the semicircular part can rotate into the region of magnetic field. (a) Calculate the maximum value of the emf induced between the ends of the conductor. V(b) What is the value of the average induced emf for each complete rotation? Consider carefully whether the correct answer is…arrow_forwardA coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.20 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 6.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forward
- A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.80 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 5.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forwardWhich vowel does this graph represent (”ah,” “ee,” or “oo”)? How can you tell? Also, how would you be able to tell for the other vowels?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forward
- A bat is flying toward a cave wall at 27.0 m/s. What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0 kHz? The speed of sound is 341.5 m/s. Multiple Choice о 60.9 kHz О 56.5 kHz о 61.3 kHz О 56.1 kHzarrow_forwardCompare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?arrow_forwardThe slope of a graph of velocity, v, vs frequency, f, is equal to wavelength, l. Compare the slope of your Data Table 1 graph to the average wavelength (Ave, l) from Data Table 1 by calculating the % Difference.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





