PHYSICS:F/SCI.+ENGRS.(LL)-W/WEBASSIGN
PHYSICS:F/SCI.+ENGRS.(LL)-W/WEBASSIGN
10th Edition
ISBN: 9781337888714
Author: SERWAY
Publisher: CENGAGE L
Question
Book Icon
Chapter 33, Problem 51CP

(a)

To determine

The wavelength of the wave.

(a)

Expert Solution
Check Mark

Answer to Problem 51CP

The wavelength of the wave is 3.33m .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the wavelength is,

λ=cf

Here,

c is the speed of the light.

f is the frequency of the wave.

Substitute 3×108m/s for c and 90.0MHz for f in the above equation to find the value of λ .

λ=3×108m/s90.0MHz×106Hz1MHz=3.33m

Conclusion:

Therefore, the wavelength of the wave is 3.33m .

(b)

To determine

The time period of the wave.

(b)

Expert Solution
Check Mark

Answer to Problem 51CP

The time period of the wave is 11.1ns .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the time period is,

T=1f

Substitute 90.0MHz for f in the above equation to find the value of T .

T=1(90.0MHz×106Hz1MHz)=11.1×109s×109ns1s=11.1ns

Conclusion:

Therefore, the time period of the wave is 11.1ns .

(c)

To determine

The maximum value of the magnetic field.

(c)

Expert Solution
Check Mark

Answer to Problem 51CP

The maximum value of the magnetic field is 6.67pT .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the magnitude of the magnetic field is,

Bmax=Emaxc

Here,

Emax is the peak value of the electric field.

Substitute 2.00mV/m for Emax and 3×108m/s for c in the above equation to find the value of Bmax .

Bmax=(2.00mV/m×103V/m1mV/m)(3×108m/s)=6.67×1012T=6.67pT

Conclusion:

Therefore, the maximum value of the magnetic field is 6.67pT .

(d)

To determine

The expression for electric field and the magnetic field.

(d)

Expert Solution
Check Mark

Answer to Problem 51CP

The expression for electric field is E=(2.00×103)cos2π(x3.3390.0×106t)j^ and the expression for magnetic field is B=(6.67×1012)cos2π(x3.3390.0×106t)k^ .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the angular frequency is,

ω=2πf

Here,

f is the frequency of the wave.

Substitute the 90.0×106Hz for f in the above equation to find the value of ω ,

ω=2π(90.0×106Hz) (1)

The formula to calculate the angular constant is,

k=2πλ

Here,

λ is the wavelength of wave.

Substitute the 3.33m for λ in the above equation to find the value of k ,

k=2π3.33m (2)

The formula to calculate the electric field is,

E=Emaxcos(kxωt)

Substitute 2π(90.0×106Hz) for ω , 2π3.33m for k and 2.00mV/m for Emax in the above equation to find the value of E .

E=(2.00×103V/m)cos(2π3.33mx2π(90.0×106Hz)t)E=(2.00×103)cos2π(x3.3390.0×106t)j^

The electric field is in the same direction of wave propagation.

The formula to calculate the magnetic field is,

B=Bmaxcos(kxωt)

Substitute 2π(90.0×106Hz) for ω , 2π3.33m for k and (6.67×1012) for Bmax in the above equation to find the value of B .

B=(6.67×1012T)cos(2π3.33mx2π(90.0×106Hz)t)B=(6.67×1012)cos2π(x3.3390.0×106t)k^

The direction of propagation of the magnetic field is perpendicular to that of the electric field.

Conclusion:

Therefore, the expression for electric field is E=(2.00×103)cos2π(x3.3390.0×106t)j^ and the expression for magnetic field is B=(6.67×1012)cos2π(x3.3390.0×106t)k^ .

(e)

To determine

The average power per unit area the wave carries.

(e)

Expert Solution
Check Mark

Answer to Problem 51CP

The average power per unit area the wave carries is 5.31×109W/m2 .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the average power per unit area is,

I=12εcE2max

Here,

ε is the emissivity of space.

c is the speed of the light.

Emax is the maximum electric field.

Substitute 2.00mV/m for Emax , 8.85×1012C2/Nm2 for ε and 3×108m/s for c in the above equation to find the value of I .

I=12(8.85×1012C2/Nm2)(3×108m/s)(2.00×103V/m)2=5.31×109W/m2

Conclusion:

Therefore, the average power per unit area the wave carries is 5.31×109W/m2 .

(f)

To determine

The average energy density in the radiation.

(f)

Expert Solution
Check Mark

Answer to Problem 51CP

The average energy density in the radiation is 1.77×1017J/m2 .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the average energy density is,

e=Ic

Substitute 5.31×109W/m2 for I and 3×108m/s for c in the above equation to find the value of B .

e=5.31×109W/m23×108m/s=1.77×1017J/m2

Conclusion:

Therefore, the average energy density in the radiation is 1.77×1017J/m2 .

(g)

To determine

The radiation pressure exerted by the wave.

(g)

Expert Solution
Check Mark

Answer to Problem 51CP

The radiation pressure exerted by the wave is 3.54×1017J/m2 .

Explanation of Solution

Given info: The frequency of the wave is 90.0MHz and the peak value of the electric field is 2.00mV/m in positive y direction.

The formula to calculate the radiation pressure is,

P=2Ic=2e

Substitute 1.77×1017J/m2 for e in above equation to find the value of P .

P=2(1.77×1017J/m2)=3.54×1017J/m2

Conclusion:

Therefore, the radiation pressure exerted by the wave is 3.54×1017J/m2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 33 Solutions

PHYSICS:F/SCI.+ENGRS.(LL)-W/WEBASSIGN

Ch. 33 - A diathermy machine, used in physiotherapy,...Ch. 33 - The distance to the North Star, Polaris, is...Ch. 33 - A radar pulse returns to the transmitterreceiver...Ch. 33 - The speed of an electromagnetic wave traveling in...Ch. 33 - You are working for SETI, the Search for...Ch. 33 - Review. A microwave oven is powered by a...Ch. 33 - Verify by substitution that the following...Ch. 33 - Why is the following situation impossible? An...Ch. 33 - At what distance from the Sun is the intensity of...Ch. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - High-power lasers in factories are used to cut...Ch. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - An important news announcement is transmitted by...Ch. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 33 - The eye is most sensitive to light having a...Ch. 33 - Prob. 36APCh. 33 - You are working as a radio technician. One day,...Ch. 33 - One goal of the Russian space program is to...Ch. 33 - The intensity of solar radiation at the top of the...Ch. 33 - The Earth reflects approximately 38.0% of the...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 33 - Prob. 44APCh. 33 - Prob. 45APCh. 33 - You may wish to review Sections 16.4 and 16.8 on...Ch. 33 - You are working at NASA, in a division that is...Ch. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning