bartleby

Videos

Question
Book Icon
Chapter 33, Problem 34AP
To determine

The classification of waves of frequencies 2Hz , 2kHz , 2MHz , 2GHz , 2THz , 2PHz , 2EHz , 2ZHz and 2YHz on the electromagnetic spectrum and the classification of waves of wavelengths 2km , 2m , 2mm , 2μm , 2nm , 2pm , 2fm , and 2am

Expert Solution & Answer
Check Mark

Answer to Problem 34AP

The classification of waves on the basis of frequency is shown below.

Frequency, f Wavelength, λ=cf Classification
2Hz 150Mm Radio
2kHz = 2×103Hz 150km Radio
2MHz = 2×106Hz 150m Radio
2GHz = 2×109Hz 150cm Microwave
2THz = 2×1012Hz 150μm Infrared
2PHz = 2×1015Hz 150nm Ultraviolet
2EHz = 2×1018Hz 150pm X-ray
2ZHz = 2×1021Hz 150fm Gamma ray
2YHz = 2×1024Hz 150am Gamma ray

The classification of waves on the basis of wavelength is shown below.

Wavelength, λ Frequency, f=cλ Classification
2km = 2×103m 1.5×105Hz Radio
2m = 2×100m 1.5×108Hz Radio
2mm = 2×103m 1.5×1011Hz Microwave
2μm = 2×106m 1.5×1014Hz Infrared
2nm = 2×109m 1.5×1017Hz Ultraviolet/ X-ray
2pm = 2×1012m 1.5×1020Hz X-ray/Gamma ray
2fm = 2×1015m 1.5×1023Hz Gamma ray
2am = 2×1018m 1.5×1026Hz Gamma ray

Explanation of Solution

The formula to calculate the wavelength is,

λ=cf (1)

Here,

c is the speed of light.

f is the frequency of the wave.

Substitute 3×108m/s for c and 2Hz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2Hz)=15×107m×106Mm1m=150Mm

Substitute 3×108m/s for c and 2kHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2kHz×103Hz1kHz)=15×104m×103km1m=150km

Substitute 3×108m/s for c and 2MHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2MHz×106Hz1MHz)=1.5×102m=150m

Substitute 3×108m/s for c and 2GHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2GHz×109Hz1GHz)=1.5×101m×103cm1m=150cm

Substitute 3×108m/s for c and 2THz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2THz×1012Hz1THz)=1.5×104m×106μm1m=150μm

Substitute 3×108m/s for c and 2PHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2PHz×1015Hz1PHz)=1.5×107m×109nm1m=150nm

Substitute 3×108m/s for c and 2EHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2EHz×1018Hz1EHz)=1.5×1010m×1012pm1m=150pm

Substitute 3×108m/s for c and 2ZHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2ZHz×1021Hz1ZHz)=1.5×1013m×1015fm1m=150fm

Substitute 3×108m/s for c and 2YHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2YHz×1024Hz1YHz)=1.5×1016m×1018am1m=150am

From the above calculation, the table for the wavelength can be deduces and the respective classification of waves is shown.

Frequency, f Wavelength, λ=cf Classification
2Hz 150Mm Radio
2kHz = 2×103Hz 150km Radio
2MHz = 2×106Hz 150m Radio
2GHz = 2×109Hz 150cm Microwave
2THz = 2×1012Hz 150μm Infrared
2PHz = 2×1015Hz 150nm Ultraviolet
2EHz = 2×1018Hz 150pm X-ray
2ZHz = 2×1021Hz 150fm Gamma ray
2YHz = 2×1024Hz 150am Gamma ray

The formula to calculate the frequency is,

f=cλ (2)

Here,

c is the speed of light.

λ is the wavelength of the wave.

Substitute 3×108m/s for c and 2km for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2km×103m1km)=1.5×105Hz

Substitute 3×108m/s for c and 2m for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2m)=1.5×108Hz

Substitute 3×108m/s for c and 2mm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2mm×103m1mm)=1.5×1011Hz

Substitute 3×108m/s for c and 2μm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2μm×106m1μm)=1.5×1014Hz

Substitute 3×108m/s for c and 2nm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2nm×109m1nm)=1.5×1017Hz

Substitute 3×108m/s for c and 2pm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2pm×1012m1nm)=1.5×1020Hz

Substitute 3×108m/s for c and 2fm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2am×1015m1am)=1.5×1023Hz

Substitute 3×108m/s for c and 2am for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2am×1018m1am)=1.5×1026Hz

From the above calculation the table for the frequency can be deduces and the respective classification of waves is shown below.

Wavelength, λ Frequency, f=cλ Classification
2km = 2×103m 1.5×105Hz Radio
2m = 2×100m 1.5×108Hz Radio
2mm = 2×103m 1.5×1011Hz Microwave
2μm = 2×106m 1.5×1014Hz Infrared
2nm = 2×109m 1.5×1017Hz Ultraviolet/ X-ray
2pm = 2×1012m 1.5×1020Hz X-ray/Gamma ray
2fm = 2×1015m 1.5×1023Hz Gamma ray
2am = 2×1018m 1.5×1026Hz Gamma ray

Conclusion:

Therefore, the table of classification of waves with the frequencies is shown below.

Frequency, f Wavelength, λ=cf Classification
2Hz 150Mm Radio
2kHz = 2×103Hz 150km Radio
2MHz = 2×106Hz 150m Radio
2GHz = 2×109Hz 150cm Microwave
2THz = 2×1012Hz 150μm Infrared
2PHz = 2×1015Hz 150nm Ultraviolet
2EHz = 2×1018Hz 150pm X-ray
2ZHz = 2×1021Hz 150fm Gamma ray
2YHz = 2×1024Hz 150am Gamma ray

Therefore, the table of classification of waves with the wavelengths is shown below.

Wavelength, λ Frequency, f=cλ Classification
2km = 2×103m 1.5×105Hz Radio
2m = 2×100m 1.5×108Hz Radio
2mm = 2×103m 1.5×1011Hz Microwave
2μm = 2×106m 1.5×1014Hz Infrared
2nm = 2×109m 1.5×1017Hz Ultraviolet/ X-ray
2pm = 2×1012m 1.5×1020Hz X-ray/Gamma ray
2fm = 2×1015m 1.5×1023Hz Gamma ray
2am = 2×1018m 1.5×1026Hz Gamma ray

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Classify waves with frequencies of 2 Hz, 2 kHz, 2 MHz, 2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on the electromagnetic spectrum. Classify waves with wavelengths of 2 km, 2 m, 2 mm, 2 μm, 2 nm, 2 pm, 2 fm, and 2 am.
Visible light corresponds roughly to the range of wavelengths from 400 nm (violet) to 700 nm (red). 1 nm = 1 nanometer = 10-9 m. What is the frequency of visible light at a wavelength of 600 nm? f= Hz Enter your answer above using scientific notation with the format x.yzEq = x.yz x109. For example, 1.23 x 10-9 is entered as 1.23E-9. What is the wavelength of a visible light wave with a frequency of 4.64 x 10¹4 Hz? λ = nm
If the speed of light is 3×108 meters/second and the wavelength of an infrared wave used in a remote control is 7×10−9 meters, then what is its frequency? A. 4×1016 Hz B. 4×10−2 Hz C. 2×100 Hz D. 2×10−17 Hz

Chapter 33 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY