
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 33.49P
To determine
The angle between the rays
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
please help with this question asap!!! in detail
please answer this asap!!!!
RT = 4.7E-30
18V
IT = 2.3E-3A+
12
38Ω
ли
56Ω
ли
r5
27Ω
ли
r3
28Ω
r4
> 75Ω
r6
600
0.343V
75.8A
Now figure out how much current in going through the r4
resistor.
|4 =
unit
And then use that current to find the voltage drop across the r
resistor.
V4
=
unit
Chapter 33 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forward
- A small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forwardTICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forward
- The 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forwardIf a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forward
- A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning