In Lesson 3-1, we studied a cab ride by looking at the price for certain distances in table and graph form. We found that the initial cost of starting the trip was $5.10, which means that you’d pay $5.10 for zero miles traveled. We also found that the slope of the line was $2.60, which means that you’d pay $2.60 per mile. Using what we learned in Lesson 3-2, we can write a formula that describes the cost of a trip ( C ) in terms of miles traveled ( m ): C = 5.1 + 2.6 m . If you have budgeted $18 for a cab ride to tour the downtown area, how far can you go? Set up and solve an equation.
In Lesson 3-1, we studied a cab ride by looking at the price for certain distances in table and graph form. We found that the initial cost of starting the trip was $5.10, which means that you’d pay $5.10 for zero miles traveled. We also found that the slope of the line was $2.60, which means that you’d pay $2.60 per mile. Using what we learned in Lesson 3-2, we can write a formula that describes the cost of a trip ( C ) in terms of miles traveled ( m ): C = 5.1 + 2.6 m . If you have budgeted $18 for a cab ride to tour the downtown area, how far can you go? Set up and solve an equation.
Solution Summary: The author calculates the distance a person can travel at 18 when the cost is given by the equation C=5.1+2.6m.
In Lesson 3-1, we studied a cab ride by looking at the price for certain distances in table and graph form. We found that the initial cost of starting the trip was $5.10, which means that you’d pay $5.10 for zero miles traveled. We also found that the slope of the line was $2.60, which means that you’d pay $2.60 per mile. Using what we learned in Lesson 3-2, we can write a formula that describes the cost of a trip (C) in terms of miles traveled (m):
C
=
5.1
+
2.6
m
.
If you have budgeted $18 for a cab ride to tour the downtown area, how far can you go? Set up and solve an equation.
Explain the key points and reasons for 12.8.2 (1) and 12.8.2 (2)
Q1:
A slider in a machine moves along a fixed straight rod. Its
distance x cm along the rod is given below for various values of the time. Find the
velocity and acceleration of the slider when t = 0.3 seconds.
t(seconds)
x(cm)
0 0.1 0.2 0.3 0.4 0.5 0.6
30.13 31.62 32.87 33.64 33.95 33.81 33.24
Q2:
Using the Runge-Kutta method of fourth order, solve for y atr = 1.2,
From
dy_2xy +et
=
dx x²+xc*
Take h=0.2.
given x = 1, y = 0
Q3:Approximate the solution of the following equation
using finite difference method.
ly -(1-y=
y = x), y(1) = 2 and y(3) = −1
On the interval (1≤x≤3).(taking h=0.5).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.