A Figure P32.74 shows an N-turn rectangular coil of length a and width b entering a region of uniform magnetic field of magnitude Bout directed out of the page. The velocity of the coil is constant and is upward in the figure. The total resistance of the coil is R. What are the magnitude and direction of the magnetic force on the coil a. when only a portion of the coil has entered the region with the field, b. when the coil is completely embedded in the field, and c. as the coil begins to exit the region with the field?
(a)
The magnitude and direction of the magnetic force on the coil when a portion of the coil enters the region of the field.
Answer to Problem 74PQ
The magnitude of the magnetic force on the coil when a portion of the coil enters the region of the field is
Explanation of Solution
Faraday’s law states that an emf is induced in a coil when the magnetic flux linked with the coil changes.
The direction of the induced emf is given by Lenz law. Lenz law states that the current induced in a circuit due to change or a motion in the magnetic field, opposes the change in flux and exerts a mechanical force opposing the motion.
A current carrying conductor experiences a force in a magnetic field. Thus, the conductor experiences a force due to the current induced in it.
A coil ABCD of
The coil moves with a constant velocity
Figure-(1)
Write the expression for the induced emf entering the magnetic field.
Write the expression for magnitude of the induced current in the coil.
Here,
Substitute equation (I) in the above equation to find
The flux entering the coil increases, as the coil enters the magnetic field. According to Lenz law, the current in the segment which enters the field, flows towards the right, from point A to point B.
Write the expression for force experienced by the segment due to current flowing in the coil.
According to the right hand screw rule, the force acts perpendicular to both the direction of current and the magnetic field. Therefore, the force acts downwards.
Write the expression for magnitude of the force.
Substitute equation (II) in the above equation to find
Conclusion:
Therefore, the magnitude of the magnetic force on the coil, when a portion of the coil enters the region of the field is
(b)
The magnitude and direction of the magnetic force on the coil when the coil is completely embedded in the field.
Answer to Problem 74PQ
The magnitude of the force on the coil when it is completely embedded in the magnetic field is
Explanation of Solution
As shown in Figure-(2), the coil is completely embedded in the field.
Figure-(2)
According to Faraday’s law of electromagnetic induction, the emf induced in the coil is
There is no current flow in the coil, when the induced emf is
Conclusion:
Therefore, the magnetic force on the coil when it is completely embedded in the magnetic field is
(c)
The magnitude and direction of the magnetic force on the coil as the coil begins to exit the region of the field.
Answer to Problem 74PQ
The magnitude of the magnetic force on the coil, when a portion of the coil exits the region of the field is
Explanation of Solution
The outward flux through the coil decreases, as the coil begins to exit the field. The current flows in the counter clockwise direction in the coil. The current flows from point D to point C as shown in figure-(3).
Figure-(3)
The magnitude of the current in the coil remains the same as it is when the coil enters the field, as the coil moves with the same constant speed. The direction of the current flowing in the coil, when it exits the field, is opposite to the direction of the current when the coil enters the field.
Write the expression for the current in the coil when it exits the magnetic field.
Write the expression for magnitude of the force experienced by the coil.
The magnitude of the force experienced by the coil, when it exits the field is same as, when it enters the field.
The force acts downwards along the plane of the paper.
Conclusion:
Therefore, the magnitude of the magnetic force on the coil, when a portion of the coil exits the region of the field is
Want to see more full solutions like this?
Chapter 32 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- The members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forwardpls helparrow_forward
- pls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forward
- What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill