The resistor in Figure P32.49 represents the midrange speaker in a three-speaker system. Assume its resistance to be constant at 8.00 Ω. The source represents an audio amplifier producing signals of uniform amplitude ΔVmax = 10.0 V at all audio frequencies. The inductor and capacitor are to function as a band-pass filter with
Figure P32.49
(a)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
Formula to calculate the output potential difference is,
Here,
Formula to calculate the input potential difference is,
Here,
Divide equation (1) and equation (1).
Formula to calculate the inductive reactance of the circuit is,
Here,
Formula to calculate the inductive reactance of the circuit is,
Here,
Formula to calculate the impedance of the circuit is,
Here,
Substitute
At low frequency that is
Substitute
Substitute
Solve the equation further,
Divide the equation by
At high frequency that is
Substitute
Substitute
Solve the equation further,
Subtract the equation (5) and equation (6) to find the value of
Conclusion:
Therefore, the required value of inductance
(b)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
The equation (6) is given as,
Substitute
Conclusion:
Therefore, the required value of capacitance
(c)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
The value
At resonance condition,
Substitute
Conclusion:
Therefore, the maximum value of the ratio
(d)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
Since the ratio
Formula to calculate the resonance frequency is,
Substitute
Conclusion:
Therefore, the frequency
(e)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
Formula to calculate the phase shift between
At
Substitute
At
Substitute
At
Substitute
Conclusion:
Therefore, the phase shift between
(f)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
Formula to calculate the rms output voltage is,
Formula to calculate the power deliver to the speaker is,
Substitute
For low frequency
Substitute
Substitute
For resonance frequency
Substitute
Substitute
Conclusion:
Therefore, the average power transferred to the speaker at
(g)

Answer to Problem 49CP
Explanation of Solution
Given info: The value of resistance is
Formula to calculate the quality factor is,
Substitute
Conclusion:
Therefore, the quality factor of the circuit is
Want to see more full solutions like this?
Chapter 32 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
- 3aarrow_forward44 please help with the this.arrow_forward4a Which of the following values COULD NOT be a magnitude? Choose all that apply. 626 0 -0.806 8.63 -48.5 72 131 156 4b Px = -1248 & Py = 261. Determine P.P = Qx = -1540 & Qy = 375. Determine Q.Q = 4c. T = 1105 & Ty = 425. Determine the two possible values for Tx. 4d. Uy = -38. Which of the following COULD NOT be the value of U? Choose all that apply. 10 70 72 31 47 0 75 38 4e. R has a magnitude of 165. Which of the following COULD be Rx? Choose all that apply. 165 -171 155 0 -156 -165 172 -130arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





