EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 48PCE
To determine
The energy required to remove one neutron from
11 23 Na
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How many kilograms of water are needed to obtain the198.8 mol of deuterium, assuming that deuterium is0.01500% (by number) of natural hydrogen?
The radioactive isotope, 14 6 C does not occur naturally but it is found at constant rate by the action of cosmic rays on the atmosphere. It is taken up by plants and animals and deposited in the body structure along with natural carbon, but this process stops at death. The charcoal from the fire pit of an ancient camp has an activity due to 146C of 12.9 disintegrations per minute, per gram of carbon. If the percentage of 146C compared with normal Carbon in living trees is 1.35 × 10−10%, the decay constant is 3.92 × 10−10 s−1 and the atomic weight = 12.0, what is the age of the campsite?
How much energy in kJ is released to form one mole of 75As from protons, electrons, and neutrons if the nucleus has a mass of 74.921594 amu? The masses of the proton, electron and neutron are 1.00728 amu, 0.000549 amu and 1.00867 amu, respectively.
-3.15e10 kJ/mol
-6.31e10 kJ/mol
-6.31e13 kJ/mol
3.15e13 kJ/mol
Chapter 32 Solutions
EBK PHYSICS
Ch. 32.1 - Prob. 1EYUCh. 32.2 - A given nucleus can decay by alpha decay, beta...Ch. 32.3 - Prob. 3EYUCh. 32.4 - Prob. 4EYUCh. 32.5 - Prob. 5EYUCh. 32.6 - Prob. 6EYUCh. 32.7 - Prob. 7EYUCh. 32.8 - Prob. 8EYUCh. 32.9 - Prob. 9EYUCh. 32 - Prob. 1CQ
Ch. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - Prob. 7CQCh. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 1PCECh. 32 - Prob. 2PCECh. 32 - Prob. 3PCECh. 32 - Prob. 4PCECh. 32 - Prob. 5PCECh. 32 - Prob. 6PCECh. 32 - Prob. 7PCECh. 32 - Prob. 8PCECh. 32 - Prob. 9PCECh. 32 - Prob. 10PCECh. 32 - Prob. 11PCECh. 32 - Prob. 12PCECh. 32 - Prob. 13PCECh. 32 - Prob. 14PCECh. 32 - Prob. 15PCECh. 32 - Prob. 16PCECh. 32 - Prob. 17PCECh. 32 - Prob. 18PCECh. 32 - Prob. 19PCECh. 32 - Prob. 20PCECh. 32 - Prob. 21PCECh. 32 - Prob. 22PCECh. 32 - Prob. 23PCECh. 32 - Prob. 24PCECh. 32 - Prob. 25PCECh. 32 - Prob. 26PCECh. 32 - Prob. 27PCECh. 32 - Prob. 28PCECh. 32 - Suppose we were to discover that the ratio of...Ch. 32 - A radioactive sample is placed in a closed...Ch. 32 - Radon gas has a half-life of 3.82 d. What is the...Ch. 32 - Prob. 32PCECh. 32 - The number of radioactive nuclei in a particular...Ch. 32 - Prob. 34PCECh. 32 - Prob. 35PCECh. 32 - Prob. 36PCECh. 32 - Prob. 37PCECh. 32 - Prob. 38PCECh. 32 - Prob. 39PCECh. 32 - Prob. 40PCECh. 32 - Prob. 41PCECh. 32 - Prob. 42PCECh. 32 - Prob. 43PCECh. 32 - Prob. 44PCECh. 32 - Prob. 45PCECh. 32 - Prob. 46PCECh. 32 - Prob. 47PCECh. 32 - Prob. 48PCECh. 32 - Prob. 49PCECh. 32 - Prob. 50PCECh. 32 - Prob. 51PCECh. 32 - Prob. 52PCECh. 32 - Prob. 53PCECh. 32 - Prob. 54PCECh. 32 - Prob. 55PCECh. 32 - Consider a fusion reaction in which two deuterium...Ch. 32 - Prob. 57PCECh. 32 - Prob. 58PCECh. 32 - Prob. 59PCECh. 32 - Prob. 60PCECh. 32 - Prob. 61PCECh. 32 - Prob. 62PCECh. 32 - Prob. 63PCECh. 32 - Prob. 64PCECh. 32 - Prob. 65PCECh. 32 - Prob. 66PCECh. 32 - Prob. 67PCECh. 32 - Prob. 68GPCh. 32 - Prob. 69GPCh. 32 - Prob. 70GPCh. 32 - Prob. 71GPCh. 32 - Prob. 72GPCh. 32 - Prob. 73GPCh. 32 - Moon Rocks In one of the rocks brought back from...Ch. 32 - Prob. 75GPCh. 32 - Prob. 76GPCh. 32 - Prob. 77GPCh. 32 - Prob. 78GPCh. 32 - Prob. 79GPCh. 32 - Prob. 80GPCh. 32 - Prob. 81GPCh. 32 - Prob. 82GPCh. 32 - Prob. 83GPCh. 32 - Prob. 84GPCh. 32 - Prob. 85GPCh. 32 - Prob. 86GPCh. 32 - Prob. 87GPCh. 32 - Prob. 88GPCh. 32 - Prob. 89PPCh. 32 - Prob. 90PPCh. 32 - Prob. 91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The liquid drop model may be used to determine the nuclear binding energy for an isotope. This model uses the semiempirical binding energy formula, which takes into consideration four major effects (one term per effect) that contribute to the nuclear binding energy. The semiempirical binding energy formula may be expressed as: Z(Z - 1) C3 A1/3 (N – z)2 E, = C;A – C,A?/3 A The first term is the volume term, the second is the surface term, the third is the Coulomb term, and the fourth is the symmetry term. For nuclei having A 2 15, the constants have the following values: = 15.7 MeV, C, = 17.8 MeV, C3 = 0.71 MeV, and C. = 23.6 MeV 56 (a) Use the semiempirical binding energy formula to determine the nuclear binding energy (in MeV) for the isotope Fe. 26 MeV (b) Determine the percentage contribution to the binding energy by each of the four terms. (You should expect positive and negative values, but the sum should be 100%. Due to the nature of this problem, do not use rounded intermediate…arrow_forwardUse the below values for this problem. Please note that the mass for H is for the entire atom (proton & electron). Neutron: m = 1.67493x10-27 kg = 1.008665 u = 939.57 MeV/c² . ¹H: mH = 1.67353x10-27 kg = 1.007825 u = 938.78 MeV/c² 1 1 u = 1.6605x10-27 kg = 931.5 MeV/c² . Consider the following decay: 239 Pu 235 U+ a. 239 Pu has a mass of 239.0521634 u, 235 U has a mass of 235.0439299 u, and a has a mass of 4.002603 u. 94 92 94 92 Determine the disintegration energy (Q-value) in MeV. Q = Determine the binding energy (in MeV) for 239 Pu. 94 EB =arrow_forward7arrow_forward
- Naturally-Occurring Radioactive Materials consists of radioactive material that comes out of the Earth's crust and mantle. Natural radioactive isotopes such as 232U were produced billions of years ago but still persist because of their long half-lives. Its products form a long chain of radionuclides, with the emission of particles. Complete the diagram given below for 233U series. 238, 92 218 Po 84 214pb 82 234 Th 90 Rn B- 206Pb 82 a 91 Pa 226 88 Ra QB₁ B²8Po Bi Po a B- 234 U 92 a Th Pb 210Biarrow_forwardMany transuranium elements, such as neptunium-240, have very short half-lives. (For 240 Np, the half-life is 62 minutes.) However, some, like uranium-233 (half-life is 1.59 x 10° years), have relatively long half-lives. Use the masses given in the following table to calculate the change in energy when 1 mole of 240 Np nuclei and I mole of 23U nuclei are each formed from their respective number of protons and neutrons. Atom or Particle Atomic Mass Neutron 1.67493 x 10-24 g Proton 1.67262 x 10-24 g Electron 9.10939 x 10-28 240 Np 3.98623 x 102 233 U 3.86972 x 10 2"g (Since the masses of 240 Np and 23 U are atomic masses, they each include the mass of the electrons present. The mass of the nucleus will be the atomic mass minus the mass of the electrons.) 240 Submit Answer Try Another Version 9 item attempts remainingarrow_forwardDetermine the number of neutrons in a bromine nucleus, which has a radius of approximately 5.32 ✕ 10−15 m.arrow_forward
- PLS help asaparrow_forwardThe rubidium isotope 8Rb is a ß emitter with a half life of 4.9 × 1010 y . It is used to determine the age of rocks and fossils. Rocks containing the fossils of early animals contain a ratio of Sr to Assuming that there was no when the rocks were formed, calculate the age of these fossils. Answer in units of y. that decays into 87Sr. 87 Rb of 0.02. 87 Sr presentarrow_forwardCobalt-60 and iodine-131 are used in treatments for some types of cancer. Cobalt-60 decays with a half-life of 5.27 years, emitting beta particles with a maximum energy of 0.32 MeV. Iodine-131 decays with a half-life of8.04 days, emitting beta particles with a maximumenergy of 0.60 MeV.(a) Suppose a fixed small number of moles of each of these isotopes were to be ingested and remain in the body indefinitely. What is the ratio of the number of millisieverts of total lifetime radiation exposure that would be caused by the two radioisotopes?(b) Now suppose that the contact with each of these isotopes is for a fixed short period, such as 1 hour. What is the ratio of millisieverts of radiation exposure for the two in this case?arrow_forward
- c) The nucleus of which atom contains 49 neutrons? A 32S 16 B 48TI 22 C 86 Rb 12 Cd D 1 48arrow_forwardAn α-particle moving with initial kinetic energy K towards a nucleus of atomic number z approaches a distance ‘d’ at which it reverses its direction. Obtain the expression for the distance of closest approach ‘d’ in terms of the kinetic energy of α-particle K.arrow_forward个 个 50 Write the complete nuclear equation for atoms undergoing electron capture. 901 Ag + 116. Sn + 78 123 53arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning