Marie Cornu, a physicist at the Polytechnic Institute in Paris, invented phasors in about 1880. This problem helps you see their general utility in representing oscillations. Two mechanical vibrations are represented by the expressions
and
where y1 and y2 are in centimeters and t is in seconds. Find the amplitude and phase constant of the sum of these functions (a) by using a trigonometric identity (as from Appendix B) and (b) by representing the oscillations as phasors. (c) State the result of comparing the answers to parts (a) and (b). (d) Phasors make it equally easy to add traveling waves. Find the amplitude and phase constant of the sum of the three waves represented by
where x, y1, y2, and y3, are in centimeters and t is in seconds.
(a)
Answer to Problem 39AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Write the expression for the sum of two wave functions.
Here,
Substitute
Further solve the equation,
Conclusion:
Therefore, the amplitude of the sum of the given function by trigonometry identity is
(b)
Answer to Problem 39AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Write the expression for the phasor of a first oscillation.
Write the expression for the phasor of a second oscillation.
Write the expression for the sum of two wave functions.
Substitute
Thus, the phasor representation of the sum of two wave functions is
Formula to calculate the amplitude of the resultant wave is,
Here,
Substitute
Thus, the amplitude of the resultant wave is
Formula to calculate the angle of the resultant wave makes with the first wave is,
Substitute
Thus, phase difference between the resultant and the
Conclusion:
Therefore, the amplitude of the sum of the given function by phasor representation is
(c)
Answer to Problem 39AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Since from the trigonometry identities the amplitude and the phase angle of the sum of two waves are identical to the amplitude and the phase angle of the sum of two waves by phasor representation, hence the both the method is valid to estimate the amplitude and the phase angle of the resultant wave.
Conclusion:
Therefore, the result of part (a) and part (b) are identical.
(d)
Answer to Problem 39AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Write the expression for the phasor of a first oscillation.
Write the expression for the phasor of a second oscillation.
Write the expression for the phasor of a third oscillation.
Write the expression for the sum of two wave functions.
Substitute
Thus, the phasor representation of the sum of three wave functions is
Formula to calculate the amplitude of the resultant wave is,
Here,
Substitute
Thus, the amplitude of the resultant wave is
Formula to calculate the angle of the resultant wave is,
Substitute
Write the expression for the angle with the first wave.
Substitute
Conclusion:
Therefore, the amplitude of the sum of the given function by phasor representation is
Want to see more full solutions like this?
Chapter 32 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forward
- Can someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forwardhelp because i am so lost and it should look something like the picturearrow_forward
- 3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning