DIFF EQUAT W/BOUNDAR >PRINT UPGRADE<
9th Edition
ISBN: 9781337810906
Author: ZILL
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.2, Problem 32E
To determine
To check: Whether the average velocity of rain drop is consistent with the models or not.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0
given (under the measure P) by
d.St 0.03 St dt + 0.2 St dwt,
with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to
price an option on this stock (which we name cubic put). This option is European-type, with
maturity 3 months (i.e. T = 0.25 years), and payoff given by
F = (8-5)+
(a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure
Q. (You don't need to prove it, simply give the answer.)
(b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2.
(c) Let X =
S. Find the Stochastic Differential Equation satisfied by the process (Xt)
under the measure Q.
(d) Find an explicit expression for X₁ = S3 under measure Q.
(e) Using the results above, find the price of the cubic put option mentioned above.
(f) Is the price in (e) the same as in question (b)? (Explain why.)
Problem 4. Margrabe formula and the Greeks (20 pts)
In the homework, we determined the Margrabe formula for the price of an option allowing you to
swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility
σ and correlation p, the formula was given by
Fo=yo (d+)-x0Þ(d_),
where
In (±²
Ꭲ
d+
õ√T
and
σ = σ√√√2(1 - p).
дго
(a) We want to determine a "Greek" for ỡ on the option: find a formula for
θα
(b) Is
дго
θα
positive or negative?
(c) We consider a situation in which the correlation p between the two stocks increases: what
can you say about the price Fo?
(d) Assume that yo< xo and p = 1. What is the price of the option?
The Course Name Real Analysis please Solve questions by Real Analysis
Chapter 3 Solutions
DIFF EQUAT W/BOUNDAR >PRINT UPGRADE<
Ch. 3.1 - The population of a community is known to increase...Ch. 3.1 - Suppose it is known that the population of the...Ch. 3.1 - The population of a town grows at a rate...Ch. 3.1 - The population of bacteria in a culture grows at a...Ch. 3.1 - The radioactive isotope of lead, Pb-209, decays at...Ch. 3.1 - Initially 100 milligrams of a radioactive...Ch. 3.1 - Determine the half-life of the radioactive...Ch. 3.1 - (a) Consider the initial-value problem dA/dt = kA,...Ch. 3.1 - When a vertical beam of light passes through a...Ch. 3.1 - Prob. 10E
Ch. 3.1 - Carbon Dating Archaeologists used pieces of burned...Ch. 3.1 - The Shroud of Turin, which shows the negative...Ch. 3.1 - Newtons Law of Cooling/Warming A thermometer is...Ch. 3.1 - A thermometer is taken from an inside room to the...Ch. 3.1 - A small metal bar, whose initial temperature was...Ch. 3.1 - Two large containers A and B of the same size are...Ch. 3.1 - A thermometer reading 70 F is placed in an oven...Ch. 3.1 - At t = 0 a sealed test tube containing a chemical...Ch. 3.1 - A dead body was found within a closed room of a...Ch. 3.1 - The rate at which a body cools also depends on its...Ch. 3.1 - A tank contains 200 liters of fluid in which 30...Ch. 3.1 - Solve Problem 21 assuming that pure water is...Ch. 3.1 - A large tank is filled to capacity with 500...Ch. 3.1 - In Problem 23, what is the concentration c(t) of...Ch. 3.1 - Solve Problem 23 under the assumption that the...Ch. 3.1 - Determine the amount of salt in the tank at time t...Ch. 3.1 - A large tank is partially filled with 100 gallons...Ch. 3.1 - In Example 5 the size of the tank containing the...Ch. 3.1 - A 30-volt electromotive force is applied to an...Ch. 3.1 - Solve equation (7) under the assumption that E(t)...Ch. 3.1 - A 100-volt electromotive force is applied to an...Ch. 3.1 - A 200-volt electromotive force is applied to an...Ch. 3.1 - An electromotive force E(t)={120,0t200,t20 is...Ch. 3.1 - An LR-series circuit has a variable inductor with...Ch. 3.1 - Air Resistance In (14) of Section 1.3 we saw that...Ch. 3.1 - How High?No Air Resistance Suppose a small...Ch. 3.1 - How High?Linear Air Resistance Repeat Problem 36,...Ch. 3.1 - Skydiving A skydiver weighs 125 pounds, and her...Ch. 3.1 - Prob. 39ECh. 3.1 - Rocket MotionContinued In Problem 39 suppose of...Ch. 3.1 - Evaporating Raindrop As a raindrop falls, it...Ch. 3.1 - Prob. 42ECh. 3.1 - Prob. 43ECh. 3.1 - Constant-Harvest model A model that describes the...Ch. 3.1 - Drug Dissemination A mathematical model for the...Ch. 3.1 - Prob. 46ECh. 3.1 - Heart Pacemaker A heart pacemaker, shown in Figure...Ch. 3.1 - Sliding Box (a) A box of mass m slides down an...Ch. 3.1 - Sliding BoxContinued (a) In Problem 48 let s(t) be...Ch. 3.1 - Prob. 50ECh. 3.2 - The number N(t) of supermarkets throughout the...Ch. 3.2 - The number N(t) of people in a community who are...Ch. 3.2 - Prob. 3ECh. 3.2 - (a) Census data for the United States between 1790...Ch. 3.2 - (a) If a constant number h of fish are harvested...Ch. 3.2 - Investigate the harvesting model in Problem 5 both...Ch. 3.2 - Repeat Problem 6 in the case a = 5, b = 1, h = 7.Ch. 3.2 - Prob. 8ECh. 3.2 - Two chemicals A and B are combined to form a...Ch. 3.2 - Solve Problem 9 if 100 grams of chemical A is...Ch. 3.2 - Leaking cylindrical tank A tank in the form of a...Ch. 3.2 - Leaking cylindrical tankcontinued When friction...Ch. 3.2 - Leaking Conical Tank A tank in the form of a...Ch. 3.2 - Inverted Conical Tank Suppose that the conical...Ch. 3.2 - Air Resistance A differential equation for the...Ch. 3.2 - How High?Nonlinear Air Resistance Consider the...Ch. 3.2 - Prob. 17ECh. 3.2 - Prob. 18ECh. 3.2 - Prob. 19ECh. 3.2 - Evaporation An outdoor decorative pond in the...Ch. 3.2 - Doomsday equation Consider the differential...Ch. 3.2 - Doomsday or extinction Suppose the population...Ch. 3.2 - Prob. 26ECh. 3.2 - Prob. 27ECh. 3.2 - Prob. 28ECh. 3.2 - Prob. 29ECh. 3.2 - Prob. 30ECh. 3.2 - Prob. 31ECh. 3.2 - Prob. 32ECh. 3.2 - Prob. 33ECh. 3.2 - Prob. 34ECh. 3.2 - Prob. 35ECh. 3.3 - We have not discussed methods by which systems of...Ch. 3.3 - Prob. 2ECh. 3.3 - Prob. 3ECh. 3.3 - Construct a mathematical model for a radioactive...Ch. 3.3 - Prob. 5ECh. 3.3 - Prob. 6ECh. 3.3 - Consider two tanks A and B, with liquid being...Ch. 3.3 - Use the information given in Figure 3.3.6 to...Ch. 3.3 - Two very large tanks A and B are each partially...Ch. 3.3 - Prob. 10ECh. 3.3 - Consider the Lotka-Volterra predator-prey model...Ch. 3.3 - Prob. 14ECh. 3.3 - Determine a system of first-order differential...Ch. 3.3 - Prob. 16ECh. 3.3 - Prob. 17ECh. 3.3 - Prob. 18ECh. 3.3 - Prob. 19ECh. 3.3 - Prob. 20ECh. 3.3 - Mixtures Solely on the basis of the physical...Ch. 3.3 - Prob. 22ECh. 3 - Answer Problems 1 and 2 without referring back to...Ch. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - tzi the Iceman In September of 1991 two German...Ch. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - According to Stefans law of radiation the absolute...Ch. 3 - Prob. 11RECh. 3 - A classical problem in the calculus of variations...Ch. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- We consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2arrow_forwardQuestion 1. Your manager asks you to explain why the Black-Scholes model may be inappro- priate for pricing options in practice. Give one reason that would substantiate this claim? Question 2. We consider stock #1 and stock #2 in the model of Problem 2. Your manager asks you to pick only one of them to invest in based on the model provided. Which one do you choose and why ? Question 3. Let (St) to be an asset modeled by the Black-Scholes SDE. Let Ft be the price at time t of a European put with maturity T and strike price K. Then, the discounted option price process (ert Ft) t20 is a martingale. True or False? (Explain your answer.) Question 4. You are considering pricing an American put option using a Black-Scholes model for the underlying stock. An explicit formula for the price doesn't exist. In just a few words (no more than 2 sentences), explain how you would proceed to price it. Question 5. We model a short rate with a Ho-Lee model drt = ln(1+t) dt +2dWt. Then the interest rate…arrow_forwardIn this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward
- 3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardThe managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c. Question content area bottom Part 1 a. Develop a simple linear regression model between billable hours and overhead costs. Overhead Costsequals=212495.2212495.2plus+left parenthesis 42.4857 right parenthesis42.485742.4857times×Billable Hours (Round the constant to one decimal place as needed. Round the coefficient to four decimal places as needed. Do not include the $ symbol in your answers.) Part 2 b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm? Interpret the fixed term, b 0b0, if appropriate. Choose the correct answer below. A. The value of b 0b0 is the predicted billable hours for an overhead cost of 0 dollars. B. It is not appropriate to interpret b 0b0, because its value…arrow_forward3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forward
- Write the equation of the trigonometric function shown in the graph. LO 5 4 3 2 1 y -5 -5 4 8 8 500 -1 -2 -3 -4 -5 x 5 15л 5л 25л 15л 35π 5л 4 8 2 8 4 8arrow_forwardc) Using only Laplace transforms solve the following Samuelson model given below i.e., the second order difference equation (where yt is national income): - Yt+2 6yt+1+5y₁ = 0, if y₁ = 0 for t < 0, and y₁ = 0, y₁ = 1 1-e-s You may use without proof that L-1[s(1-re-s)] = f(t) = r² for n ≤tarrow_forward5. 156 m/WXY = 59° 63 E 7. B E 101 C mFE = 6. 68° 8. C 17arrow_forwardScoring: MATH 15 FILING /10 COMPARISON /10 RULER I 13 Express EMPLOYMENT PROFESSIONALS NAME: SKILLS EVALUATION TEST- Light Industrial MATH-Solve the following problems. (Feel free to use a calculator.) DATE: 1. If you were asked to load 225 boxes onto a truck, and the boxes are crated, with each crate containing nine boxes, how many crates would you need to load? 2. Imagine you live only one mile from work and you decide to walk. If you walk four miles per hour, how long will it take you to walk one mile? 3. Add 3 feet 6 inches + 8 feet 2 inches + 4 inches + 2 feet 5 inches. 4. In a grocery store, steak costs $3.85 per pound. If you buy a three-pound steak and pay for it with a $20 bill, how much change will you get? 5. Add 8 minutes 32 seconds + 37 minutes 18 seconds + 15 seconds. FILING - In the space provided, write the number of the file cabinet where the company should be filed. Example: File Cabinet #4 Elson Co. File Cabinets: 1. Aa-Bb 3. Cg-Dz 5. Ga-Hz 7. La-Md 9. Na-Oz 2. Bc-Cf…arrow_forwardpart 3 of the question is: A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardIf you were asked to load 225 boxes onto a truck, and the boxes are crated, with each crate containing nine boxes, how many crates would you need to load?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell


Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License