Concept explainers
Review. Consider a capacitor with vacuum between its large, closely spaced, oppositely charged parallel plates. (a) Show that the force on one plate can be accounted for by thinking of the electric field between the plates as exerting a “negative pressure” equal to the energy density of the electric field. (b) Consider two infinite plane sheets carrying
(a)
To show: The force on one plate can be accounted for by thinking of the electrical field between the plates as exerting a negative pressure equal to the energy density of the electric field.
Answer to Problem 32.60AP
Explanation of Solution
The formula to force between the plates of capacitor is,
Here,
The formula to calculate electric field produced by negative capacitor plate is,
The formula to calculate electric field produced by positive capacitor plate is,
The formula to calculate net electric field produced between the plates is,
Substitute
The energy density of capacitor is,
Substitute
Rearrange above equation.
Here,
Hence, the force on one plate can be accounted for by thinking of the electrical field between the plates as exerting a negative pressure equal to the energy density of the electric field.
Conclusion:
Therefore, the force on one plate can be accounted for by thinking of the electrical field between the plates as exerting a negative pressure equal to the energy density of the electric field.
(b)
Answer to Problem 32.60AP
Explanation of Solution
Given info: The current density of capacitor plates is
The formula to calculate the force on one capacitor plate is,
Here,
Substitute
The formula to calculate the force per area acting on one sheet is,
Substitute
Conclusion:
Therefore, the force per area acting on one sheet due to the magnetic field is
(c)
Answer to Problem 32.60AP
Explanation of Solution
The formula to calculate the magnetic field due to positive sheet is,
The formula to calculate the magnetic field due to positive sheet is,
The formula to calculate the net magnetic field between the sheets is,
Substitute
The formula to calculate the net magnetic field outside the sheets is,
Substitute
Conclusion:
Therefore, the net magnetic field between the sheets is
(d)
Answer to Problem 32.60AP
Explanation of Solution
The formula to calculate energy density in the magnetic field between the sheets is,
Substitute
Conclusion:
Therefore, the energy density in the magnetic field between the sheets is
(e)
To show: The force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density.
Answer to Problem 32.60AP
Explanation of Solution
Given info: The current density of capacitor plates is
From part (b) the force per area acting on one sheet due to the magnetic field is
From part (d) the energy density in the magnetic field between the sheets is
Both the energy density in the magnetic field and the force per area acting on one sheet due to the magnetic field are equal. Hence, the force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density.
Conclusion:
Therefore, the force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density.
Want to see more full solutions like this?
Chapter 32 Solutions
Physics for Scientists and Engineers
- A hydrogen atom has just a single electron orbiting the nucleus, which happens to be a single proton without any neutrons. The proton is positively charged, the electron negatively, but both with the same magnitude of charge given by e=1.602x10-19C. The mass of an electron is 9.11x10-31kg, and the proton is 1.67x10-27kg. Find the ratio of the electrostatic to the gravitational force of attraction between the electron and the proton in hydrogen. \arrow_forwardWhat is the third law pair to the normal force as you sit in a chair? What effect does the sun's pull on earth have in terms of third law pairs?arrow_forwardUsing Newton's 2nd law, show that all objects subject to the pull of gravity alone should fall at the same rate. What is that rate?arrow_forward
- No chatgpt pls will upvotearrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardLight travels through a vacuum at a speed of 2.998 x 108m/s. Determine the speed of light in the following media: crown glass (n = 1.52)arrow_forward
- 2.62 Collision. The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s² in a direction opposite to the train's velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the pas- senger train and the back of the freight train.arrow_forwardCan I get help with how to calculate total displacement? The answer is 78.3x-4.8yarrow_forward2.70 Egg Drop. You are on the Figure P2.70 roof of the physics building, 46.0 m above the ground (Fig. P2.70). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your profes- sor's head, where should the profes- sor be when you release the egg? Assume that the egg is in free fall. 2.71 CALC The acceleration of a particle is given by ax(t) = -2.00 m/s² +(3.00 m/s³)t. (a) Find the initial velocity Vox such that v = 1.20 m/s 1.80 m 46.0 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning