Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 32.18P
(a)
To determine
To draw: The current in the circuit as function of time for
(b)
To determine
To draw: The current in the circuit as function of time for
(c)
To determine
To draw: The current in the circuit as function of time for
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 10.00 μF capacitor C is initially charged to a voltage V of 10.00 (V). It is then connected in series with an inductor L. Charge and current oscillations ensue.
(a) What is the total energy U of the circuit?
(b) If the maximum current in the inductor is Im = 0.500 (A), then what is the inductance L? What is the charge Q on the positive plate of the capacitor when the current reaches its maximum value Im?
(c) What is the angular frequency of the charge oscillations?
After reaching steady state, an RL circuit is disconnected from the battery such that the circuit
consists of a resistor and inductor wired in series. The resulting current through the inductor (with
t 0 corresponding to the moment the battery is disconnected) is indicated below as a function of
time t for four sets of values for the resistance R and the inductance L: (1) Ro and Lo, (2) 2Ro and
Lo, (3) Ro and 2Lo, (4) 2Ro and 2Lo
After reaching steady state, an RL circuit is disconnected from the battery such that the circuit
consists of a resistor and inductor wired in series. The resulting current through the inductor (with
t = 0 corresponding to the moment the battery is disconnected) is indicated below as a function of
time t for four sets of values for the resistance R and the inductance L: (1) Ro and Lo, (2) 2Ro and
Lo, (3) Ro and 2L。 (4) 2R0 and 2L0.
Which set goes with which curve? Explain your answers.
Chapter 32 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 32 - A coil with zero resistance has its ends labeled a...Ch. 32 - Prob. 32.2QQCh. 32 - Prob. 32.3QQCh. 32 - Prob. 32.4QQCh. 32 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 32.1OQCh. 32 - Prob. 32.2OQCh. 32 - Prob. 32.3OQCh. 32 - In Figure OQ32.4, the switch is left in position a...Ch. 32 - Prob. 32.5OQ
Ch. 32 - Prob. 32.6OQCh. 32 - Prob. 32.7OQCh. 32 - Prob. 32.1CQCh. 32 - Prob. 32.2CQCh. 32 - A switch controls the current in a circuit that...Ch. 32 - Prob. 32.4CQCh. 32 - Prob. 32.5CQCh. 32 - Prob. 32.6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - After the switch is dosed in the LC circuit shown...Ch. 32 - Prob. 32.9CQCh. 32 - Discuss the similarities between the energy stored...Ch. 32 - Prob. 32.1PCh. 32 - Prob. 32.2PCh. 32 - Prob. 32.3PCh. 32 - Prob. 32.4PCh. 32 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 32 - Prob. 32.6PCh. 32 - Prob. 32.7PCh. 32 - Prob. 32.8PCh. 32 - Prob. 32.9PCh. 32 - Prob. 32.10PCh. 32 - Prob. 32.11PCh. 32 - A toroid has a major radius R and a minor radius r...Ch. 32 - Prob. 32.13PCh. 32 - Prob. 32.14PCh. 32 - Prob. 32.15PCh. 32 - Prob. 32.16PCh. 32 - Prob. 32.17PCh. 32 - Prob. 32.18PCh. 32 - Prob. 32.19PCh. 32 - When the switch in Figure P32.18 is closed, the...Ch. 32 - Prob. 32.21PCh. 32 - Show that i = Iiet/ is a solution of the...Ch. 32 - Prob. 32.23PCh. 32 - Consider the circuit in Figure P32.18, taking =...Ch. 32 - Prob. 32.25PCh. 32 - The switch in Figure P31.15 is open for t 0 and...Ch. 32 - Prob. 32.27PCh. 32 - Prob. 32.28PCh. 32 - Prob. 32.29PCh. 32 - Two ideal inductors, L1 and L2, have zero internal...Ch. 32 - Prob. 32.31PCh. 32 - Prob. 32.32PCh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Complete the calculation in Example 31.3 by...Ch. 32 - Prob. 32.37PCh. 32 - A flat coil of wire has an inductance of 40.0 mH...Ch. 32 - Prob. 32.39PCh. 32 - Prob. 32.40PCh. 32 - Prob. 32.41PCh. 32 - Prob. 32.42PCh. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - Prob. 32.45PCh. 32 - Prob. 32.46PCh. 32 - In the circuit of Figure P31.29, the battery emf...Ch. 32 - A 1.05-H inductor is connected in series with a...Ch. 32 - A 1.00-F capacitor is charged by a 40.0-V power...Ch. 32 - Calculate the inductance of an LC circuit that...Ch. 32 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 32 - Prob. 32.52PCh. 32 - Prob. 32.53PCh. 32 - Prob. 32.54PCh. 32 - An LC circuit like the one in Figure CQ32.8...Ch. 32 - Show that Equation 32.28 in the text Ls Kirchhoffs...Ch. 32 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 32 - Consider an LC circuit in which L = 500 mH and C=...Ch. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Review. Consider a capacitor with vacuum between...Ch. 32 - Prob. 32.61APCh. 32 - An inductor having inductance I. and a capacitor...Ch. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 32.64APCh. 32 - When the current in the portion of the circuit...Ch. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 32.67APCh. 32 - Prob. 32.68APCh. 32 - Prob. 32.69APCh. 32 - At t = 0, the open switch in Figure P31.46 is...Ch. 32 - Prob. 32.71APCh. 32 - Prob. 32.72APCh. 32 - Review. A novel method of storing energy has been...Ch. 32 - Prob. 32.74APCh. 32 - Review. The use of superconductors has been...Ch. 32 - Review. A fundamental property of a type 1...Ch. 32 - Prob. 32.77APCh. 32 - In earlier times when many households received...Ch. 32 - Assume the magnitude of the magnetic field outside...Ch. 32 - Prob. 32.80CPCh. 32 - To prevent damage from arcing in an electric...Ch. 32 - One application of an RL circuit is the generation...Ch. 32 - Prob. 32.83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The self-inductance and capacitance of an LC circuit e 0.20 mH and 5.0 pF. What is the angular frequency at which the circuit oscillates?arrow_forwardIn the LC circuit in Figure 33.11, the inductance is L = 19.8 mH and the capacitance is C = 19.6 mF. At some moment, UB = UE= 17.5 mJ. a. What is the maximum charge stored by the capacitor? b. What is the maximum current in the circuit? c. At t = 0, the capacitor is fully charged. Write an expression for the charge stored by the capacitor as a function of lime. d. Write an expression for the current as a function of time.arrow_forward(i) When a particular inductor is connected to a source of sinusoidally varying emf with constant amplitude and a frequency of 60.0 Hz, the rms current is 3.00 A. What is the rms current if the source frequency is doubled? (a) 12.0 A (b) 6.00 A (c) 4.24 A (d) 3.00 A (e) 1.50 A (ii) Repeat part (i) assuming the load is a capacitor instead of an inductor. (iii) Repeat part (i) assuming the load is a resistor instead of an inductor.arrow_forward
- In an oscillating LC circuit, the maximum charge on the capacitor is qm. Determine the charge on the capacitor and the current through the inductor den energy is shared equally between the electric and magnetic fields. Express your answer in terms of qm, L, and C.arrow_forwardA 90.0 mH inductor is connected in a circuit. The current through the inductor is given by the function t²-6¹. Estimate the time at which the emf will reduce to zero.arrow_forwardc) The current follows in a charging inductor I(t) at time t seconds is given by: i(t) = I,(1 – e7) mA Where I, is the supply current and t= 30. 1. Evaluate the following The current flows in the inductor up to 3 significant figures after 24 seconds if the supply current I, = 75 mA The time t to 3 significant figures taken for current flows in the inductor to reach 40 mA if the supply current Is remains at 75 mA. i. ii. 2. Find an equation for the energy and evaluate it when L= 10 mH.arrow_forward
- An electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 14.0 H and resistance R = 7.50 connected to a 12.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. R www @ (a) the maximum current carried by the electromagnet (b) the time constant of the circuit S (c) the time it takes the current to reach 95.0% of its maximum value sarrow_forwardAn electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 12.5 H and resistance R = 5.50 0 connected to a 12.0-V battery and switch figure shown below. After the switch is closed, find the following. R (a) the maximum current carried by the electromagnet (b) the time constant of the circuit (c) the time it takes the current to reach 95.0% of its maximum valuearrow_forwardAn electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 14.5 H and resistance R = 8.00 n connected to a 18.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. R (a) the maximum current carried by the electromagnet (b) the time constant of the circuit (c) the time it takes the current to reach 95.0% of its maximum valuearrow_forward
- A 90.0 mH inductor is connected in a circuit. The current through the inductor is given by the function t²-6. At 10 s what will be the magnitude of the induced emf?arrow_forwardIn a series RL circuit, the resistance is 135 ohms, the inductance is 120 x 10-3 H, and the source of electromotive force is ξ. After some time, the current in the circuit reaches its maximum value, and at this time the energy stored in the inductor is 230 x 10-3 J. a) What is the value of ξ? b) Next, we remove the electromotive force source and connect the inductor directly to the resistor. How long will it take for the energy stored in the inductor to decrease to half of its initial value?arrow_forwardc) The current follows in a charging inductor I(t) at time t seconds is given by: i(t) = 1,(1- e i) mA Where I, is the supply current and t= 30. 1. Evaluate the following The current flows in the inductor up to 3 significant figures after 24 seconds if the supply current I, = 75 mA The time t to 3 significant figures taken for current flows in the inductor to reach 40 mA if the supply current Is remains at 75 mA. i. ii. 2. Find an equation for the energy and evaluate it when L= 10 mH. d) The generated voltage of a turbine at timet seconds is given by: v(t) = Vssin(0.4nt +) Where Vs is generator voltage in Volts. Evaluate the following: iii. The voltage of the generator after 2.5 seconds if Vs = 70 V. The voltage at time t = 0 seconds to 3 significant figures The time when the generator first reaches maximum voltage, the period, the frequency, and the time displacement. iv. v. Your answer to this part of the task should be supported by suitably annotated graphical evidence to help…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning