Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 32, Problem 26P

(a)

To determine

The current in the inductor as a function of time.

(a)

Expert Solution
Check Mark

Answer to Problem 26P

The current in the inductor as a function of time is 500mA(1e10t).

Explanation of Solution

Write the expression based on junction rule.

    junctionI=0

Here, junctionI is the sum current at the junction.

Write the expression to obtain the loop rule.

    closedloopΔV=0

Here, closedloopΔV is the potential drop across each element in a closed circuit.

Write the expression to obtain the current in the circuit.

    I=εR(1eRtL)

Here, current in the circuit is I, ε is the voltage in the circuit, R is the resistance of the resistor, L is the inductance of the inductor and t is the duration of time.

The current flow in the circuit is as shown in the figure below.

Physics for Scientists and Engineers with Modern Physics, Technology Update, Chapter 32, Problem 26P

Figure-(1)

Write the expression to obtain the voltage the loop ACDFA.

    ε=R1I1+R2I2+LdI2dt                                                                                 (I)

Here, ε is the voltage in the battery, R1 is the resistor across AB I1 is the current across resistor R1, R2 is the resistor across BC, I2 is the current across the resistor R2, L is the inductor across CD.

Write the expression to obtain the loop ABEFA.

    ε=I1R1+(I1I2)R3

Here, R3 is the resistor across BC.

Re-write the above equation.

    ε=I1(R1+R3)I2R3ε+I2R3=I1(R1+R3)I1=ε+I2R3R1+R3                                                                                (II)

Substitute ε+I2R3R1+R3 for I1 in equation (I).

    ε=R1(ε+I2R3R1+R3)+R2I2+LdI2dtLdI2dt+I2R2=εR1(ε+I2R3R1+R3)LdI2dt+I2R2=εR1+εR3εR1I2R1R3R1+R3LdI2dt=εR3I2R1R3R1+R3I2R2

Further solve the above equation.

    LdI2dt=εR3R1+R3I2R1R3R1+R3I2R2LdI2dt=εR3R1+R3I2(R1R3R1+R3+R2)dI2dt=εR3L(R1+R3)I2L(R2+R1R3R1+R3)dI2dt+I2L(R2+R1R3R1+R3)=εR3L(R1+R3)

The general solution of the linear differential equation.

    I2e1L(R2+R1R3R1+R3)t=εR3(R1R2+R2R3+R1R3)e1L(R2+R1R3R1+R3)t+c                                         (III)

Here, c is the constant term.

Substitute 0 for I2 and t in the above equation to find c.

    (0)e1L(R2+R1R3R1+R3)(0)=εR3(R1R2+R2R3+R1R3)e1L(R2+R1R3R1+R3)(0)+c0=εR3(R1R2+R2R3+R1R3)+cc=εR3(R1R2+R2R3+R1R3)

Substitute εR3(R1R2+R2R3+R1R3) for c in equation (III) to find I2.

    I2e1L(R2+R1R3R1+R3)t=εR3(R1R2+R2R3+R1R3)e1L(R2+R1R3R1+R3)tεR3(R1R2+R2R3+R1R3)I2=εR3(R1R2+R2R3+R1R3)e1L(R2+R1R3R1+R3)te1L(R2+R1R3R1+R3)tεR3(R1R2+R2R3+R1R3)e1L(R2+R1R3R1+R3)t=εR3(R1R2+R2R3+R1R3)εR3(R1R2+R2R3+R1R3)e1L(R2+R1R3R1+R3)t=εR3(R1R2+R2R3+R1R3)(1e1L(R2+R1R3R1+R3)t)

Substitute R for R1 and R3, 2R for R2 in the above equation.

    I2=εR(2R2+2R2+R2)(1e1L(2R+R2R+R)t)=εR(5R2)(1e1L(2R+R22R)t)=ε5R(1eRL(2.5)t)

Conclusion:

Substitute 10.0V for ε, 1.00H for L and 4.00Ω for R in the above equation to calculate I2.

    I2=10.0V5(4.00Ω)(1e4.00Ω1.00H(2.5)t)=(500×103A×1mA103A)(1e10t)=500mA(1e10t)

Therefore, the current in the inductor as a function of time is 500mA(1e10t).

(b)

To determine

The current in the switch as a function of time.

(b)

Expert Solution
Check Mark

Answer to Problem 26P

The current in the switch as a function of time is 1.5A(0.25A)e10t.

Explanation of Solution

Consider equation (II) to obtain the current in the switch as a function of time.

    I1=ε+I2R3R1+R3

Substitute R for R1 and R2 in the above equation.

    I1=ε+I2RR+R=ε+I2R2R=ε2R+I22

Further substitute ε5R(1eRL(2.5)t) for I2 in the above equation.

    I1=ε2R+12(ε5R(1eRL(2.5)t))=ε2R+ε10R(1eRL(2.5)t)

Conclusion:

Substitute 10.0V for ε, 1.00H for L and 4.00Ω for R in the above equation to calculate I2.

    I1=10.0V2(4.00Ω)+10.0V10(4.00Ω)(1e4.00Ω1.00H(2.5)t)=1.5A(0.25A)e10t

Therefore, the current in the switch as a function of time is 1.5A(0.25A)e10t.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 32 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY