In Exercises 21 through 26, find a redundant column vector of the given matrix A, and write it as a linear combination of preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of A. (This procedure is illustrated in Example 8.) 26. [ 1 3 6 1 2 5 1 1 4 ]
In Exercises 21 through 26, find a redundant column vector of the given matrix A, and write it as a linear combination of preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of A. (This procedure is illustrated in Example 8.) 26. [ 1 3 6 1 2 5 1 1 4 ]
Solution Summary: The author explains how the vectors in the kernel of an ntimes m matrix A correspond to the linear relations among the columns.
In Exercises 21 through 26, find a redundant column vector of the given matrix A, and write it as a linear combination of preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of A. (This procedure is illustrated in Example 8.)
26.
[
1
3
6
1
2
5
1
1
4
]
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.