
Concept explainers
Interpretation:
All the qualitatively different
Concept Introduction:
The qualitative change in the dynamics of the flow with parameters is called bifurcation and the points at which this occurs is called bifurcation points.
The stability of the dynamical systems can be studied using bifurcation.
Transcritical bifurcation is one of the bifurcation mechanism in which two fixed points exchange their stability instead of destroying.
In the transcritical bifurcation, fixed points exist for all values of the parameter.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Nonlinear Dynamics and Chaos
- a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 12 23 81 82 83 S4 $1 -20 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 2 -2 0 11 0 0 -4 0 -8 b) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize 21 - - 2x2 + x3 - 4x4 subject to 2x1+x22x3x4≥ 1, 5x1+x2-x3-4 -1, 2x1+x2-x3-342, 1, 2, 3, 4 ≥0.arrow_forwardSuppose we have a linear program in standard equation form maximize c'x subject to Ax=b, x≥ 0. and suppose u, v, and w are all optimal solutions to this linear program. (a) Prove that zu+v+w is an optimal solution. (b) If you try to adapt your proof from part (a) to prove that that u+v+w is an optimal solution, say exactly which part(s) of the proof go wrong. (c) If you try to adapt your proof from part (a) to prove that u+v-w is an optimal solution, say exactly which part(s) of the proof go wrong.arrow_forward(a) For the following linear programme, sketch the feasible region and the direction of the objective function. Use you sketch to find an optimal solution to the program. State the optimal solution and give the objective value for this solution. maximize +22 subject to 1 + 2x2 ≤ 4, 1 +3x2 ≤ 12, x1, x2 ≥0 (b) For the following linear programme, sketch the feasible region and the direction of the objective function. Explain, making reference to your sketch, why this linear programme is unbounded. maximize ₁+%2 subject to -2x1 + x2 ≤ 4, x1 - 2x2 ≤4, x1 + x2 ≥ 7, x1,x20 Give any feasible solution to the linear programme for which the objective value is 40 (you do not need to justify your answer).arrow_forward
- find the domain of the function f(x)arrow_forwardFor each of the following functions, find the Taylor Series about the indicated center and also determine the interval of convergence for the series. 1. f(x) = ex-2, c = 2 Π == 2. f(x) = sin(x), c = 2arrow_forwardQUESTION 5. Show that if 0 ≤r≤n, then r+2 r r (c) + (+³) + (+³) +- + (*) -(+) n n+ = r (1)...using induction on n. (2) ...using a combinatorial proof.arrow_forward
- Use a power series to approximate each of the following to within 3 decimal places: 1. arctan 2. In (1.01)arrow_forwardFor each of the following power series, find the interval of convergence and the radius of convergence: n² 1.0 (x + 1)" n=1 շո 3n 2. Σ n=1 (x-3)n n3arrow_forwardUse a known series to find a power series in x that has the given function as its sum: 1. xcos(x³) 2. In (1+x) xarrow_forward
- if n is odd integer then 4 does not divide narrow_forwardor W Annuities L Question 2, 5.3.7 > Find the future value for the ordinary annuity with the given payment and interest rate. PMT = $2,000; 1.65% compounded quarterly for 11 years. The future value of the ordinary annuity is $ (Do not round until the final answer. Then round to the nearest cent as needed.) example Get more help Q Search 30 Larrow_forwardFor all integers a and b, a + b is not ≡ 0(mod n) if and only if a is not ≡ 0(mod n)a or is not b ≡ 0(mod n). Is conjecture true or false?why?arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
