
(a)
Interpretation:
To find the electrode where the oxidation is occurring.
Concept introduction:
Oxidation is the loss of electrons or an increase in the oxidation state of an atom, an ion, or of certain atom in a molecule.

Answer to Problem 1ASA
The oxidation occurs at zinc electrode, because the zinc electrode is negative.
Explanation of Solution
The negative electrode in a voltaic cell is taken to be the one from which electrons are emitted (i.e., where oxidation occurs). The negative electrode is the one that is connected to the minus pole of the voltmeter when the voltage is measured.
Therefore, the oxidation occurs at zinc electrode, because zinc electrode is negative.
(b)
Interpretation:
To write the equation for the oxidation half-reaction in the cell.
Concept introduction:
Half-reaction is defined as either the oxidation or reduction reaction of a

Answer to Problem 1ASA
The equation for the oxidation half-reaction is obtained.
Explanation of Solution
Hence, the equation for the oxidation half-reaction of this cell is written as
Therefore, the zinc electrode is considered as the oxidation half-reaction of this cell.
(c)
Interpretation:
To write the equation for the reduction half-reaction in the cell.
Concept introduction:
Half-reaction is defined as either the oxidation or reduction reaction of a redox reaction. A half-reaction is obtained by considering the change in the oxidation states of individual substances involved in the redox reaction.

Answer to Problem 1ASA
The equation for the reduction half-reaction is obtained.
Explanation of Solution
Chemical reactions can be classified as oxidation-reduction reactions, because they involve the oxidation of one species and the reduction of another. Such reactions can conveniently be considered as the result of two half-reactions, one of oxidation and the other reduction.
Hence, the equation for the reduction half-reaction of this cell is written as
Therefore, the copper electrode is considered as the reduction half-reaction of this cell.
(d)
Interpretation:
To write the net ionic equation for the spontaneous oxidation-reduction reaction that occurs in the cell.
Concept introduction:
The net ionic equation is obtained by combining both oxidation and reduction-half reactions in this cell.

Answer to Problem 1ASA
The net ionic for the spontaneous oxidation-reduction reaction is obtained.
Explanation of Solution
When we connect a voltmeter between the two electrodes, we will find that there is a voltage, or potential, between them. The magnitude of the potential is a direct measure of the chemical tendency, or more properly the
Hence, the net ionic for the spontaneous oxidation-reduction reaction that occurs in this cell is written as
Therefore, the oxidation and reduction reaction of zinc and copper electrode is considered as the net ionic equation of this cell.
Want to see more full solutions like this?
Chapter 32 Solutions
EBK CHEMICAL PRINCIPLES IN THE LABORATO
- identify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward
- 3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forward
- A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forward
- Hi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




