COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 32, Problem 10PE
How many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to α acfivity?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of
nitrogen at a pressure of 1.83×105 Pa and a
temperature of 290 K. The nitrogen may be
treated as an ideal gas. The gas is first compressed
isobarically to half its original volume. It then
expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
Part A
Compute the temperature at the beginning of the adiabatic expansion.
Express your answer in kelvins.
ΕΠΙ ΑΣΦ
T₁ =
?
K
Submit
Request Answer
Part B
Compute the temperature at the end of the adiabatic expansion.
Express your answer in kelvins.
Π ΑΣΦ
T₂ =
Submit
Request Answer
Part C
Compute the minimum pressure.
Express your answer in pascals.
ΕΠΙ ΑΣΦ
P =
Submit
Request Answer
?
?
K
Pa
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Chapter 32 Solutions
COLLEGE PHYSICS
Ch. 32 - In terms of radiation dose, what is the major...Ch. 32 - One of the methods used to limit radiation dose to...Ch. 32 - Isotopes that emit (radiation are relatively safe...Ch. 32 - Why is radon more closely associated with inducing...Ch. 32 - The RBE for lowenergy s is 1.7, whereas that for...Ch. 32 - Which methods of radiation protection were used in...Ch. 32 - What radioisotope could be a problem in homes...Ch. 32 - Are some types of cancer more sensitive to...Ch. 32 - Suppose a person swallows some radioactive...Ch. 32 - Radiotherapy is more likely to be used to treat...
Ch. 32 - Does loud irradiation leave the food radioactive?...Ch. 32 - Compare a low dose of radiation to a human with a...Ch. 32 - Suppose one load irradiation plant uses a 137Cs...Ch. 32 - Why does the fusion of light nuclei into heavier...Ch. 32 - Energy input is required to fuse medium-mass...Ch. 32 - In considering potential fusion reactions, what is...Ch. 32 - Give reasons justifying the contention made in the...Ch. 32 - Explain why the fission of heavy nuclei releases...Ch. 32 - Explain, in terms of conservation of momentum and...Ch. 32 - The ruins of the Chernobyl reactor are enclosed in...Ch. 32 - Since the uranium or plutonium nucleus fissions...Ch. 32 - The cure of a nuclear reactor generates a large...Ch. 32 - How can a nuclear reactor contain many critical...Ch. 32 - Why can heavy nuclei with odd numbers of neutrons...Ch. 32 - Why is a conventional fission nuclear reactor not...Ch. 32 - What are some of the reasons that plutonium rather...Ch. 32 - Use the laws of conservation of momentum and...Ch. 32 - How does the lithium deuteride in the...Ch. 32 - Fallout from nuclear weapons tests in the...Ch. 32 - A neutron generator uses an (source, such as...Ch. 32 - Neutrons from a source (perhaps the one discussed...Ch. 32 - The purpose of producing 99Mo (usually by neutron...Ch. 32 - (a) Two annihilation rays in a PET scan originate...Ch. 32 - Table 32.1 indicates that 7.50 mCi of 99mTc is...Ch. 32 - The activities of 131I and 123I used in thyroid...Ch. 32 - (a) Neutron activation of sodium, which is 100%...Ch. 32 - What is the dose in mSv for: (a) a 0.1 Gy xray?...Ch. 32 - Find the radiation dose in Gy for: (a) A 10mSv...Ch. 32 - How many Gy of exposure is needed to give a...Ch. 32 - What is the dose in Sv in a cancer treatment that...Ch. 32 - One half the rays from 99mTc are absorbed by a...Ch. 32 - A plumber at a nuclear power plant receives a...Ch. 32 - In the 1980s, the term picowave was used to...Ch. 32 - Find the mass of 239Pu mat has an activity of 1.00...Ch. 32 - A beam of 168MeV nitrogen nuclei is used for...Ch. 32 - (a) If the average molecular mass of compounds in...Ch. 32 - Calculate the dose in Sv to the chest at a patient...Ch. 32 - (a) A cancer patient is exposed to rays from a...Ch. 32 - What is the mass of 60Co in a cancer therapy...Ch. 32 - Large amounts of 65Zn are produced in copper...Ch. 32 - Naturally occurring 40K is listed as responsible...Ch. 32 - (a) Background radiation due to 226Ra averages...Ch. 32 - The annual radiation dose from 14C in our bodies...Ch. 32 - If everyone in Australia received an extra 0.05...Ch. 32 - Verify that the total number at nucleons, total...Ch. 32 - Calculate the energy output in each of the fusion...Ch. 32 - Show that the total energy released in the...Ch. 32 - Verify by listing the number of nucleons, total...Ch. 32 - The energy produced by the fusion of a 1.00—kg...Ch. 32 - Tritium is naturally rare, but can be produced by...Ch. 32 - Two fusion reactions mentioned in the text are...Ch. 32 - (a) Calculate the number of grams of deuterium in...Ch. 32 - How many kilograms of water are needed to obtain...Ch. 32 - The power output of the Sun is 41026W. (a) If 90%...Ch. 32 - Another set of reactions that result in the fusing...Ch. 32 - (a) Find the total energy released in MeV in each...Ch. 32 - Verify that the total number of nucleons, total...Ch. 32 - Integrated Concepts The laser system tested for...Ch. 32 - Integrated Concepts Find the amount of energy...Ch. 32 - Integrated Concepts: (a) What temperature gas...Ch. 32 - Integrated Concepts (a) Estimate the years 1hat1he...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - (a) Calculate the energy released in the...Ch. 32 - Confirm that each at the reactions listed for...Ch. 32 - Breeding plutonium produces energy even before any...Ch. 32 - The naturally occurring radioactive isotope 232Th...Ch. 32 - The electrical power output of a large nuclear...Ch. 32 - A large power reactor that has been in operation...Ch. 32 - Find the mass converted into energy by a 12.0kT...Ch. 32 - What mass is converted into energy by a 1.00MT...Ch. 32 - Fusion bombs use neutrons from their fission...Ch. 32 - It is estimated that the total explosive yield of...Ch. 32 - A radiationenhanced nuclear weapon (or neutron...Ch. 32 - (a) How many 239Pu nuclei must fission to produce...Ch. 32 - Assume onefourth of the yield of a typical 320kT...Ch. 32 - This problem gives some idea of the magnitude of...Ch. 32 - It is estimated that weapons tests in the...Ch. 32 - A 1.00MT bomb exploded a few kilometers above the...Ch. 32 - Integrated Concepts One scheme to put nuclear...Ch. 32 - Prob. 1TPCh. 32 - Prob. 2TPCh. 32 - Prob. 3TPCh. 32 - Prob. 4TPCh. 32 - Prob. 5TPCh. 32 - Prob. 6TPCh. 32 - Prob. 7TPCh. 32 - Prob. 8TPCh. 32 - Prob. 9TPCh. 32 - Prob. 10TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Two different female Drosophila were isolated, each heterozygous for the autosomally linked genes b (black body...
Concepts of Genetics (12th Edition)
During exponential growth, a population always (A) has a constant per capita population growth rate. (B) quickl...
Campbell Biology (11th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (3rd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- A-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardYour answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward
- 4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
