
EBK ENGINEERING MECHANICS: DYNAMICS, SI
8th Edition
ISBN: 9781119047315
Author: Bolton
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.10, Problem 222P
To determine
The final angular velocity.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Homework#7
Computing Angles of Rotation and Angles of Tilt
In each of the following problems, the axis of a hole is shown in a rectangular solid. In
order to position the hole axis for drilling, the angle of rotation and the angle of tilt must be
determined. Compute angles to the nearer minute in triangles with customary unit sides.
Compute angles to the nearer hundredth degree in triangles with metric unit sides.
a. Compute the angle of rotation, R.
b. Compute the angle of tilt,
T.
7. Given: H= 2.600 in.
L = 2.400 in.
a.
W= 1.900 in.
8. Given: H= 55.00 mm
b.
Use this figure for #7 and #8.
AXIS OF HOLE
L 48.00 mm
W= 30.00 mm
H
a.
b.
9. Given: H = 4.750 in.
L = 4.000 in.
W= 3.750 in.
a.
10. Given: H=42.00 mm
b.
L37.00 mm
W = 32.00 mm
a.
b.
11. Given: H = 0.970 in.
L = 0.860 in.
W= 0.750 in.
a.
12. Given: H= 22.00 mm
L 18.00 mm
=
W = 15.00 mm
a.
b.
Use this figure for #9 and #10.
ZR
AXIS OF HOLE
Use this figure for #11 and #12.
H
b.
L
AXIS OF HOLE
T
This is a tilt and rotation question. Here are notes attached for reference. I prefer handwritten solutions. ONLY UPLOAD A SOLUTION IF YOU ARE SURE ABOUT THE ANSWER PLEASE. I prefer handwritten solutions.
Chapter 3 Solutions
EBK ENGINEERING MECHANICS: DYNAMICS, SI
Ch. 3.4 - Prob. 1PCh. 3.4 - The 50-kg crate is stationary when the force P is...Ch. 3.4 - At a certain instant, the 80-lb crate has a...Ch. 3.4 - A man pulls himself up the 15° incline by the...Ch. 3.4 - The 10-Mg truck hauls the 20-Mg trailer. If the...Ch. 3.4 - A 60-kg woman holds a 9-kg package as she stands...Ch. 3.4 - During a brake test, the rear-engine car is...Ch. 3.4 - Prob. 8PCh. 3.4 - The inexperienced driver of an all-wheel-drive car...Ch. 3.4 - Prob. 10P
Ch. 3.4 - The 300-Mg jet airliner has three engines, each of...Ch. 3.4 - Prob. 12PCh. 3.4 - The system of the previous problem is now placed...Ch. 3.4 - Prob. 14PCh. 3.4 - Prob. 15PCh. 3.4 - Prob. 16PCh. 3.4 - Prob. 17PCh. 3.4 - Prob. 18PCh. 3.4 - A worker develops a tension T in the cable as he...Ch. 3.4 - The wheeled cart of Prob. 3/19 is now replaced...Ch. 3.4 - Prob. 21PCh. 3.4 - Prob. 22PCh. 3.4 - Prob. 23PCh. 3.4 - Prob. 24PCh. 3.4 - Prob. 25PCh. 3.4 - Prob. 26PCh. 3.4 - Prob. 27PCh. 3.4 - Prob. 28PCh. 3.4 - Prob. 29PCh. 3.4 - Prob. 30PCh. 3.4 - Prob. 31PCh. 3.4 - Prob. 32PCh. 3.4 - Prob. 33PCh. 3.4 - Prob. 34PCh. 3.4 - Prob. 35PCh. 3.4 - Prob. 36PCh. 3.4 - Prob. 37PCh. 3.4 - Prob. 38PCh. 3.4 - Prob. 39PCh. 3.4 - Prob. 40PCh. 3.4 - Prob. 41PCh. 3.4 - Prob. 42PCh. 3.4 - Prob. 43PCh. 3.4 - Prob. 44PCh. 3.4 - Prob. 45PCh. 3.4 - Two iron spheres, each of which is 100 mm in...Ch. 3.5 - The small 2-kg block A slides down the curved path...Ch. 3.5 - If the 2-kg block passes over the top B of the...Ch. 3.5 - Prob. 49PCh. 3.5 - If the 180-lb ski-jumper attains a speed of 80...Ch. 3.5 - The 4-oz slider has a speed v = 3 ft/sec as it...Ch. 3.5 - Prob. 52PCh. 3.5 - Prob. 53PCh. 3.5 - Determine the speed which the 630-kg four-man...Ch. 3.5 - The hollow tube is pivoted about a horizontal axis...Ch. 3.5 - Prob. 56PCh. 3.5 - Prob. 57PCh. 3.5 - Prob. 58PCh. 3.5 - Prob. 59PCh. 3.5 - Prob. 60PCh. 3.5 - The standard test to determine the maximum lateral...Ch. 3.5 - Prob. 62PCh. 3.5 - Prob. 63PCh. 3.5 - Prob. 64PCh. 3.5 - Prob. 65PCh. 3.5 - A 0.2-kg particle P is constrained to move along...Ch. 3.5 - Prob. 67PCh. 3.5 - At the instant under consideration, the cable...Ch. 3.5 - Prob. 69PCh. 3.5 - The slotted arm OA rotates about a fixed axis...Ch. 3.5 - Prob. 71PCh. 3.5 - Prob. 72PCh. 3.5 - Prob. 73PCh. 3.5 - Prob. 74PCh. 3.5 - Prob. 75PCh. 3.5 - Prob. 76PCh. 3.5 - Prob. 77PCh. 3.5 - The 0.1-lb projectile A is subjected to a drag...Ch. 3.5 - Determine the speed v at which the race car will...Ch. 3.5 - The small object is placed on the inner surface of...Ch. 3.5 - The small object of mass m is placed on the...Ch. 3.5 - Prob. 82PCh. 3.5 - The slotted arm revolves in the horizontal plane...Ch. 3.5 - Beginning from rest when , a 35-kg child slides...Ch. 3.5 - A small coin is placed on the horizontal surface...Ch. 3.5 - The rotating drum of a clothes dryer is shown in...Ch. 3.5 - Prob. 87PCh. 3.5 - Prob. 88PCh. 3.5 - Prob. 89PCh. 3.5 - Prob. 90PCh. 3.5 - Prob. 91PCh. 3.5 - Prob. 92PCh. 3.5 - Prob. 93PCh. 3.5 - The slotted arm OB rotates in a horizontal plane...Ch. 3.5 - Prob. 95PCh. 3.5 - Prob. 96PCh. 3.6 - The spring is unstretched at the position x = 0....Ch. 3.6 - Prob. 98PCh. 3.6 - Prob. 99PCh. 3.6 - Prob. 100PCh. 3.6 - Prob. 101PCh. 3.6 - The small 0.1-kg slider enters the “loop-the-loop”...Ch. 3.6 - Prob. 103PCh. 3.6 - Prob. 104PCh. 3.6 - Prob. 105PCh. 3.6 - Prob. 106PCh. 3.6 - Prob. 107PCh. 3.6 - Prob. 108PCh. 3.6 - Prob. 109PCh. 3.6 - Prob. 110PCh. 3.6 - Prob. 111PCh. 3.6 - Prob. 112PCh. 3.6 - Prob. 113PCh. 3.6 - Prob. 114PCh. 3.6 - Prob. 115PCh. 3.6 - Prob. 116PCh. 3.6 - Prob. 117PCh. 3.6 - Prob. 118PCh. 3.6 - Prob. 119PCh. 3.6 - Prob. 120PCh. 3.6 - Prob. 121PCh. 3.6 - Prob. 122PCh. 3.6 - Prob. 123PCh. 3.6 - Prob. 124PCh. 3.6 - Two 425,000-lb locomotives pull fifty 200,000-lb...Ch. 3.6 - Prob. 126PCh. 3.6 - Prob. 127PCh. 3.6 - Prob. 128PCh. 3.6 - Prob. 129PCh. 3.6 - The system is released from rest with no slack in...Ch. 3.6 - Prob. 131PCh. 3.6 - Prob. 132PCh. 3.6 - Prob. 133PCh. 3.6 - Prob. 134PCh. 3.6 - The 6-kg cylinder is released from rest in the...Ch. 3.6 - Prob. 136PCh. 3.6 - Extensive testing of an experimental 2000-lb...Ch. 3.6 - The vertical motion of the 50-lb block is...Ch. 3.7 - Prob. 139PCh. 3.7 - Prob. 140PCh. 3.7 - Prob. 141PCh. 3.7 - Prob. 142PCh. 3.7 - Prob. 143PCh. 3.7 - Prob. 144PCh. 3.7 - Prob. 145PCh. 3.7 - Prob. 146PCh. 3.7 - Prob. 147PCh. 3.7 - Prob. 148PCh. 3.7 - The particle of mass m = 1.2 kg is attached to the...Ch. 3.7 - The 10-kg collar slides on the smooth vertical rod...Ch. 3.7 - The system is released from rest with the spring...Ch. 3.7 - The two wheels consisting of hoops and spokes of...Ch. 3.7 - Prob. 154PCh. 3.7 - The two 1.5-kg spheres are released from rest and...Ch. 3.7 - Prob. 156PCh. 3.7 - Prob. 157PCh. 3.7 - Prob. 158PCh. 3.7 - The small bodies A and B each of mass m are...Ch. 3.7 - Prob. 160PCh. 3.7 - Prob. 161PCh. 3.7 - Prob. 162PCh. 3.7 - Prob. 163PCh. 3.7 - A satellite is put into an elliptical orbit around...Ch. 3.7 - Prob. 165PCh. 3.7 - Prob. 166PCh. 3.7 - Prob. 167PCh. 3.7 - Prob. 168PCh. 3.7 - Prob. 169PCh. 3.7 - Prob. 170PCh. 3.7 - Prob. 171PCh. 3.7 - Prob. 172PCh. 3.9 - A 0.2-kg wad of clay is released from rest and...Ch. 3.9 - Prob. 174PCh. 3.9 - Prob. 175PCh. 3.9 - Prob. 176PCh. 3.9 - Prob. 177PCh. 3.9 - Prob. 178PCh. 3.9 - Careful measurements made during the impact of the...Ch. 3.9 - Prob. 180PCh. 3.9 - Prob. 181PCh. 3.9 - Prob. 182PCh. 3.9 - Crate A is traveling down the incline with a speed...Ch. 3.9 - The 15 200-kg lunar lander is descending onto the...Ch. 3.9 - A boy weighing 100 lb runs and jumps on his 20-lb...Ch. 3.9 - The snowboarder is traveling with a velocity of 6...Ch. 3.9 - Prob. 187PCh. 3.9 - Prob. 188PCh. 3.9 - Prob. 189PCh. 3.9 - Prob. 190PCh. 3.9 - Prob. 191PCh. 3.9 - Prob. 192PCh. 3.9 - Prob. 193PCh. 3.9 - Prob. 194PCh. 3.9 - All elements of the previous problem remain...Ch. 3.9 - Prob. 196PCh. 3.9 - Prob. 197PCh. 3.9 - Prob. 198PCh. 3.9 - The hydraulic braking system for the truck and...Ch. 3.9 - The 100-lb block is stationary at time t = 0, and...Ch. 3.9 - Prob. 201PCh. 3.9 - Prob. 202PCh. 3.9 - Prob. 203PCh. 3.9 - Prob. 204PCh. 3.9 - Prob. 205PCh. 3.9 - Prob. 206PCh. 3.9 - Prob. 207PCh. 3.9 - The 1.2-lb sphere is moving in the horizontal x-y...Ch. 3.9 - Prob. 209PCh. 3.9 - A tennis player strikes the tennis ball with her...Ch. 3.9 - Prob. 211PCh. 3.9 - Prob. 212PCh. 3.9 - Prob. 213PCh. 3.9 - Prob. 214PCh. 3.10 - Determine the magnitude HO of the angular momentum...Ch. 3.10 - Prob. 216PCh. 3.10 - Prob. 217PCh. 3.10 - Prob. 218PCh. 3.10 - Prob. 219PCh. 3.10 - Prob. 220PCh. 3.10 - Prob. 221PCh. 3.10 - Prob. 222PCh. 3.10 - Prob. 223PCh. 3.10 - Prob. 224PCh. 3.10 - Prob. 225PCh. 3.10 - Prob. 226PCh. 3.10 - Prob. 227PCh. 3.10 - Prob. 228PCh. 3.10 - Prob. 229PCh. 3.10 - Prob. 230PCh. 3.10 - A wad of clay of mass m1 with an initial...Ch. 3.10 - Prob. 232PCh. 3.10 - Prob. 233PCh. 3.10 - A particle moves on the inside surface of a smooth...Ch. 3.10 - Prob. 235PCh. 3.10 - Prob. 236PCh. 3.10 - Prob. 237PCh. 3.10 - Prob. 238PCh. 3.10 - Prob. 239PCh. 3.10 - Prob. 240PCh. 3.12 - Prob. 241PCh. 3.12 - Compute the final velocities v1′ and v2′ after...Ch. 3.12 - Prob. 243PCh. 3.12 - Prob. 244PCh. 3.12 - Prob. 245PCh. 3.12 - Prob. 246PCh. 3.12 - Prob. 247PCh. 3.12 - Prob. 248PCh. 3.12 - Prob. 249PCh. 3.12 - If the center of the ping-pong ball is to clear...Ch. 3.12 - Prob. 251PCh. 3.12 - Prob. 252PCh. 3.12 - Prob. 253PCh. 3.12 - Prob. 254PCh. 3.12 - Prob. 255PCh. 3.12 - A 0.1-kg meteor and a 1000-kg spacecraft have the...Ch. 3.12 - In a pool game the cue ball A must strike the...Ch. 3.12 - Prob. 258PCh. 3.12 - Prob. 259PCh. 3.12 - Prob. 260PCh. 3.12 - Prob. 261PCh. 3.12 - Prob. 262PCh. 3.12 - Prob. 263PCh. 3.12 - Prob. 264PCh. 3.12 - Prob. 265PCh. 3.12 - Prob. 266PCh. 3.12 - The 2-kg sphere is projected horizontally with a...Ch. 3.12 - Prob. 268PCh. 3.12 - Prob. 269PCh. 3.12 - Prob. 270PCh. 3.12 - Prob. 271PCh. 3.12 - Prob. 272PCh. 3.12 - Prob. 273PCh. 3.12 - Prob. 274PCh. 3.12 - Prob. 275PCh. 3.12 - Prob. 276PCh. 3.12 - Prob. 277PCh. 3.12 - Prob. 278PCh. 3.12 - Determine the speed v required of an earth...Ch. 3.12 - Prob. 280PCh. 3.12 - Prob. 281PCh. 3.12 - Prob. 282PCh. 3.12 - Prob. 283PCh. 3.12 - Prob. 284PCh. 3.12 - Prob. 285PCh. 3.12 - Compute the magnitude of the necessary launch...Ch. 3.12 - Prob. 287PCh. 3.12 - Prob. 288PCh. 3.12 - Prob. 289PCh. 3.12 - Prob. 290PCh. 3.12 - Prob. 291PCh. 3.12 - Prob. 292PCh. 3.12 - The perigee and apogee altitudes above the surface...Ch. 3.12 - Prob. 294PCh. 3.12 - Prob. 295PCh. 3.12 - Prob. 296PCh. 3.12 - Prob. 297PCh. 3.12 - Prob. 298PCh. 3.12 - Prob. 299PCh. 3.12 - Prob. 300PCh. 3.15 - Prob. 301RPCh. 3.15 - Prob. 302RPCh. 3.15 - Prob. 303RPCh. 3.15 - Prob. 304RPCh. 3.15 - Prob. 305RPCh. 3.15 - Prob. 306RPCh. 3.15 - Prob. 307RPCh. 3.15 - Prob. 308RPCh. 3.15 - Prob. 309RPCh. 3.15 - The slider A has a mass of 2 kg and moves with...Ch. 3.15 - Prob. 311RPCh. 3.15 - Prob. 312RPCh. 3.15 - Prob. 313RPCh. 3.15 - Prob. 314RPCh. 3.15 - A ball is released from rest relative to the...Ch. 3.15 - The small slider A moves with negligible friction...Ch. 3.15 - Prob. 317RPCh. 3.15 - Prob. 318RPCh. 3.15 - Prob. 319RPCh. 3.15 - Prob. 320RPCh. 3.15 - Prob. 321RPCh. 3.15 - The simple 2-kg pendulum is released from rest in...Ch. 3.15 - Prob. 323RPCh. 3.15 - Prob. 324RPCh. 3.15 - Prob. 325RPCh. 3.15 - Prob. 326RPCh. 3.15 - Prob. 327RPCh. 3.15 - Six identical spheres are arranged as shown in the...Ch. 3.15 - Prob. 329RPCh. 3.15 - Prob. 330RPCh. 3.15 - Prob. 331RPCh. 3.15 - Prob. 332RPCh. 3.15 - Prob. 333RPCh. 3.15 - Prob. 334RPCh. 3.15 - Prob. 335RPCh. 3.15 - Prob. 336RPCh. 3.15 - Prob. 337RPCh. 3.15 - Prob. 338RPCh. 3.15 - Prob. 339RPCh. 3.15 - The bungee jumper, an 80-kg man, falls from the...Ch. 3.15 - Prob. 341RPCh. 3.15 - Prob. 342RPCh. 3.15 - Prob. 343RPCh. 3.15 - Prob. 344RPCh. 3.15 - Prob. 345RPCh. 3.15 - Prob. 346RPCh. 3.15 - Prob. 347RPCh. 3.15 - Prob. 348RPCh. 3.15 - Prob. 349RPCh. 3.15 - Prob. 350RPCh. 3.15 - The tennis player practices by hitting the ball...Ch. 3.15 - A particle of mass m is introduced with zero...Ch. 3.15 - The system of Prob. 3/166 is repeated here. The...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a constant area semi-infinite fin of a circular cross section of radius r. and thermal conductivity k. The base is maintained at T. and the surface of the fin exchanges heat by convection to an ambient fluid at T with a heat transfer coefficient h. It is desired to increase the heat transfer from the fin. The following suggestions are made: (i) doubling k, (ii) doubling ro, (iii) doubling h. Which suggestion will bring about the largest increase in heat transfer? To x h, T C A h, Tarrow_forwardA 20 cm long 304 stainless steel bar is initially at 18°C. One end of the bar is suddenly maintained at 100°C. Assuming that your finger can tolerate a 60°C temperature, what is the longest time you are willing to wait before you touch the other end? Be on the safe side and select a conservative model. h,T oil bath glass ballarrow_forwardSmall glass balls of radius 1.1 mm are cooled in an oil bath at 22°C. The balls enter the bath at 180°C and are moved through on a conveyor belt. The estimated heat transfer coefficient is 75 W/m²-ºC. What should the conveyor speed be so that the balls leave at 40°C? The length of bath is 2.5 m.arrow_forward
- Just do Questions 7, 9, 11. Here are notes attached for reference. I prefer handwritten solutions. ONLY UPLOAD A SOLUTION IF YOU ARE SURE ABOUT THE ANSWER PLEASE.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference. I prefer handwritten solutions. ONLY UPLOAD A SOLUTION IF YOU ARE SURE ABOUT THE ANSWER PLEASE. I prefer handwritten solutions.arrow_forwardA turbine blade made of a metal alloy (k = 17 W/m-K) has a length of 5.3 cm, a perimeter of 11 cm, and a cross-sectional area of 5.13 cm². The turbine blade is exposed to hot gas from the combustion chamber at 1133°C with a convection heat transfer coefficient of 538 W/m²K. The base of the turbine blade maintains a constant temperature of 450°C and the tip is adiabatic. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Hot gas h=538 W/m²K TL E= Turbine blade k = 17 W/m-K p=11 cm, L=5.3 cm A = 5.13cm² T=450°C Determine the temperature at the tip of the turbine blade. The temperature at the tip of the turbine blade is °C.arrow_forward
- ۲/۱ : +0 تا العنوان Ч Example 5.5 The turbine rotor of a ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm in a clockwise direction when viewed from aft. The ship pitches through a total angle of 15, 7.5" above and 7.5° below the horizontal, the motion being simple harmonic and having a period of 12 sec. Determine the maximum gyroscopic couple on the holding down bolts of the turbine and the direction of yaw as the Dow rises. h2023-43-115-154 Vees 2V & Pond35. sketch the diagram for them. 147% 3-inpuls RTL-NAND having Re14502 BRO Sel: VIL VBEON 0.65V VIHAVING + 1.34V VHB VIHC Vesss: 1.142V Vine: IB RO+VBES+ 640 Vec Ret 709420 IB₁ 10.3mA Ic: Vec-VCE 5-0-2 Re 45 · 10.67-A ICCE: When A&B &C. "1" Vol No 30206 When A&B &c, "o" Uok Vec5v L.S. 5.06 4.4v VIT 94+114+1.34 -3.42 V N.ML5 V N.Mu-16u T.W= 2.75 169 N.Mu VEM VL N.ML Lex-V Re 16.41A Re ± 10.6mA Pony =69mw 37 L.S >arrow_forwardI don't know how to answer this questionarrow_forwardRequired information Consider a very long, slender rod. One end of the rod is attached to a base surface maintained at Tb, while the surface of the rod is exposed to an air temperature of 400°C. Thermocouples imbedded in the rod at locations 25 mm and 120 mm from the base surface register temperatures of 325°C and 375°C, respectively. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. T₁ Ть T₂ x2 Air Determine the rod length (mm) for the case where the ratio of the heat transfer from a finite length fin to the heat transfer from a very long fin under the same conditions is 99 percent. The length of the rod is mm.arrow_forward
- please find Ix in mm4arrow_forward۲/۱ ∞ + : 5V ON Date AND Loaded with an oR P 5- A R Vect bov V(22)= IR, Vcc-vd 2R V(21) V(22) + Vd=" or V(z) HomeWo Vec-T 022 51-2 العنوان Example 5.5: The turbine rotor of a ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm in a clockwise direction when viewed from aft. The ship pitches through a total angle of 15%, 7.5° above and 7.5° below the horizontal, the motion being simple harmonic and having a period of 12 sec. Determine the maximum gyroscopic couple on the holding down bolts of the turbine and the direction of yaw as the Dow rises. Vezi b) V225 V22 lo 21.5 2.15 U 5-0.7 K Loka (I= Vecond R 5:4.57 U 25-0-7 Tak R 5-0.7 5kr V2, Va-IR=5-2.15 -2-85 NEW G C 'WR к >arrow_forward: + ♡ +① العنوان I need a detailed drawing with explanation so A 4 ined sove in peaper 96252 Example 5.5 The turbine rotor of ship has a mass of 30 tons, a radius of gyration of 600 mm and rotates at 2400 rpm ia clockwise direction when viewed from aft. The ship pitches through a total angle of 7.5° above and 7.5° below the horizontal, the motion beingle harmonic and hav gyroscopic couple on the bow rises. ding down be a period of 12 sec. Determine the maximum of the turbine and the direction of yaw as bax r 2.01 ۳/۱arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License