Suppose that during normal respiration, the volume of air inhaled per breath (called “tidal volumeâ€�) by a mammal of any size is 6.33 mL per kilogram of body mass. a. Write a function representing the tidal volume T x (in mL) of a mammal of mass x (in kg). b. Write an equation for T − 1 x . c. What does the inverse function represent in the context of this problem? d. Find T − 1 170 and interpret its meaning in context. Round to the nearest whole unit.
Suppose that during normal respiration, the volume of air inhaled per breath (called “tidal volumeâ€�) by a mammal of any size is 6.33 mL per kilogram of body mass. a. Write a function representing the tidal volume T x (in mL) of a mammal of mass x (in kg). b. Write an equation for T − 1 x . c. What does the inverse function represent in the context of this problem? d. Find T − 1 170 and interpret its meaning in context. Round to the nearest whole unit.
Solution Summary: The author explains how to calculate the tidal volume of a mammal of any size during normal respiration.
Suppose that during normal respiration, the volume of air inhaled per breath (called “tidal volume�) by a mammal of any size is 6.33 mL per kilogram of body mass.
a. Write a function representing the tidal volume
T
x
(in mL) of a mammal of mass x (in kg).
b. Write an equation for
T
−
1
x
.
c. What does the inverse function represent in the context of this problem?
d. Find
T
−
1
170
and interpret its meaning in context. Round to the nearest whole unit.
In each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2y
B 2-
The figure gives four points and some
corresponding rays in the xy-plane. Which of
the following is true?
A
B
Angle COB is in standard
position with initial ray OB
and terminal ray OC.
Angle COB is in standard
position with initial ray OC
and terminal ray OB.
C
Angle DOB is in standard
position with initial ray OB
and terminal ray OD.
D
Angle DOB is in standard
position with initial ray OD
and terminal ray OB.
temperature in degrees Fahrenheit, n hours since midnight.
5. The temperature was recorded at several times during the day. Function T gives the
Here is a graph for this function.
To 29uis
a. Describe the overall trend of temperature throughout the day.
temperature (Fahrenheit)
40
50
50
60
60
70
5
10 15 20 25
time of day
b. Based on the graph, did the temperature change more quickly between 10:00
a.m. and noon, or between 8:00 p.m. and 10:00 p.m.? Explain how you know.
(From Unit 4, Lesson 7.)
6. Explain why this graph does not represent a function.
(From Unit 4, Lesson 8.)
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY