CALCULUS WITH APPLICATIONS
11th Edition
ISBN: 2818440028601
Author: Lial
Publisher: XX SUPPLY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3.1, Problem 82E
(a)
To determine
The value of the limit from the graph.
(b)
To determine
The procedure for finding the limit of the function
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Evaluate the definite integral using the given integration limits and the limits obtained by trigonometric substitution.
14
x²
dx
249
(a) the given integration limits
(b) the limits obtained by trigonometric substitution
Assignment #1
Q1: Test the following series for convergence. Specify the test you use:
1
n+5
(-1)n
a) Σn=o
√n²+1
b) Σn=1 n√n+3
c) Σn=1 (2n+1)3
3n
1
d) Σn=1 3n-1
e) Σn=1
4+4n
answer problem 1a, 1b, 1c, 1d, and 1e and show work/ explain how you got the answer
Chapter 3 Solutions
CALCULUS WITH APPLICATIONS
Ch. 3.1 - YOUR TURN 1 Find .
Ch. 3.1 - YOUR TURN 2 Find .
Ch. 3.1 - Prob. 3YTCh. 3.1 - YOUR TURN 4 Find .
Ch. 3.1 - YOUR TURN 5 Find .
Ch. 3.1 - YOUR TURN 6 Find .
Ch. 3.1 - Prob. 7YTCh. 3.1 - Prob. 8YTCh. 3.1 - Prob. 1WECh. 3.1 - Prob. 2WE
Ch. 3.1 - Prob. 3WECh. 3.1 - Prob. 4WECh. 3.1 - In Exercises 1-4, choose the best answer for each...Ch. 3.1 - In Exercises 1-4, choose the best answer for each...Ch. 3.1 - Prob. 3ECh. 3.1 - Prob. 4ECh. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Prob. 7ECh. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Prob. 9ECh. 3.1 - Prob. 10ECh. 3.1 - Decide whether each limit exists. If a limit...Ch. 3.1 - Prob. 12ECh. 3.1 - Prob. 13ECh. 3.1 - 14. In Exercise 10, why does , even though f(1) =...Ch. 3.1 - Prob. 15ECh. 3.1 - Prob. 16ECh. 3.1 - Prob. 17ECh. 3.1 - Complete the tables and use the results to find...Ch. 3.1 - Complete the tables and use the results to find...Ch. 3.1 - Complete the tables and use the results to find...Ch. 3.1 - Prob. 21ECh. 3.1 - Let and . Use the limit rules to find each...Ch. 3.1 - Prob. 23ECh. 3.1 - Prob. 24ECh. 3.1 - Prob. 25ECh. 3.1 - Let and . Use the limit rules to find each...Ch. 3.1 - Prob. 27ECh. 3.1 - Prob. 28ECh. 3.1 - Prob. 29ECh. 3.1 - Prob. 30ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 33ECh. 3.1 - Prob. 34ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 36ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 39ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 41ECh. 3.1 - Prob. 42ECh. 3.1 - Prob. 43ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 45ECh. 3.1 - Prob. 46ECh. 3.1 - Prob. 47ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 49ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 51ECh. 3.1 - Use the properties of limits to help decide...Ch. 3.1 - Prob. 53ECh. 3.1 - Prob. 54ECh. 3.1 - Prob. 55ECh. 3.1 - 56. Let
Find
Find
Ch. 3.1 - 57. Does a value of k exist such that the...Ch. 3.1 - 58. Repeat the instructions of Exercise 57 for the...Ch. 3.1 - Prob. 59ECh. 3.1 - Prob. 60ECh. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Prob. 63ECh. 3.1 - Prob. 64ECh. 3.1 - Prob. 65ECh. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prob. 69ECh. 3.1 - Prob. 70ECh. 3.1 - Prob. 71ECh. 3.1 - Prob. 72ECh. 3.1 - Prob. 73ECh. 3.1 - Find each of the following limits (a) by...Ch. 3.1 - Prob. 75ECh. 3.1 - Prob. 76ECh. 3.1 - Prob. 77ECh. 3.1 - Prob. 78ECh. 3.1 - Prob. 79ECh. 3.1 - Prob. 80ECh. 3.1 - Prob. 81ECh. 3.1 - Prob. 82ECh. 3.1 - Prob. 83ECh. 3.1 - 84. APPLY IT Consumer Demand When the price of an...Ch. 3.1 - 85. Sales Tax Officials in California tend to...Ch. 3.1 - Prob. 86ECh. 3.1 - 87. Average Cost The cost (in dollars) for...Ch. 3.1 - Prob. 88ECh. 3.1 - Prob. 89ECh. 3.1 - 90. Preferred Stock In business finance, an...Ch. 3.1 - Prob. 91ECh. 3.1 - Prob. 92ECh. 3.1 - 93. Sediment To develop strategies to manage water...Ch. 3.1 - Prob. 94ECh. 3.1 - Prob. 95ECh. 3.2 - YOUR TURN 1 Find all values x = a where the...Ch. 3.2 - YOUR TURN 2 Find all values of x where the...Ch. 3.2 - Find each of the following limits.
W1.
Ch. 3.2 - Prob. 2WECh. 3.2 - Prob. 3WECh. 3.2 - Prob. 4WECh. 3.2 - Prob. 5WECh. 3.2 - In Exercises 1–6, find all values x = a where the...Ch. 3.2 - In Exercises 1–6, find all values x = a where the...Ch. 3.2 - Prob. 3ECh. 3.2 - Prob. 4ECh. 3.2 - In Exercises 1–6, find all values x = a where the...Ch. 3.2 - Prob. 6ECh. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Prob. 11ECh. 3.2 - Prob. 12ECh. 3.2 - Prob. 13ECh. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Find all values x = a where the function is...Ch. 3.2 - Prob. 19ECh. 3.2 - In Exercises 19–24, (a) graph the given function,...Ch. 3.2 - In Exercises 19–24, (a) graph the given function,...Ch. 3.2 - In Exercises 19–24, (a) graph the given function,...Ch. 3.2 - Prob. 23ECh. 3.2 - Prob. 24ECh. 3.2 - Prob. 25ECh. 3.2 - In Exercises 25–28, find the value of the constant...Ch. 3.2 - In Exercises 25–28, find the value of the constant...Ch. 3.2 - In Exercises 25–28, find the value of the constant...Ch. 3.2 - Prob. 29ECh. 3.2 - Prob. 30ECh. 3.2 - Prob. 31ECh. 3.2 - Prob. 32ECh. 3.2 - Prob. 33ECh. 3.2 - Prob. 34ECh. 3.2 - 35. Production The graph shows the profit from the...Ch. 3.2 - 36. Cost Analysis The cost to transport a mobile...Ch. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Prob. 39ECh. 3.2 - Prob. 40ECh. 3.2 - Prob. 41ECh. 3.3 - YOUR TURN 1 The projected U.S. Asian population...Ch. 3.3 - Prob. 2YTCh. 3.3 - Prob. 3YTCh. 3.3 - Prob. 4YTCh. 3.3 - Prob. 5YTCh. 3.3 - Prob. 1WECh. 3.3 - Prob. 2WECh. 3.3 - Prob. 3WECh. 3.3 - Prob. 4WECh. 3.3 - Prob. 1ECh. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Prob. 3ECh. 3.3 - Prob. 4ECh. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Find the average rate of change for each function...Ch. 3.3 - Prob. 8ECh. 3.3 - Prob. 9ECh. 3.3 - Prob. 10ECh. 3.3 - Prob. 11ECh. 3.3 - Prob. 12ECh. 3.3 - Prob. 13ECh. 3.3 - Prob. 14ECh. 3.3 - Find the instantaneous rate of change for each...Ch. 3.3 - Find the instantaneous rate of change for each...Ch. 3.3 - Prob. 17ECh. 3.3 - Find the instantaneous rate of change for each...Ch. 3.3 - Prob. 19ECh. 3.3 - Prob. 20ECh. 3.3 - Prob. 21ECh. 3.3 - Prob. 22ECh. 3.3 - Prob. 23ECh. 3.3 - Prob. 24ECh. 3.3 - Prob. 25ECh. 3.3 - 26. Revenue The revenue (in thousands of dollars)...Ch. 3.3 - Prob. 27ECh. 3.3 - 28. Interest If $1000 is invested in an account...Ch. 3.3 - Prob. 29ECh. 3.3 - Prob. 30ECh. 3.3 - Prob. 31ECh. 3.3 - Prob. 32ECh. 3.3 - Prob. 33ECh. 3.3 - Prob. 34ECh. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3.3 - Prob. 39ECh. 3.3 - Prob. 40ECh. 3.3 - Prob. 41ECh. 3.3 - Prob. 42ECh. 3.3 - Prob. 43ECh. 3.3 - Prob. 44ECh. 3.4 - YOUR TURN 1 For the graph of f(x) = x2 − x, (a)...Ch. 3.4 - Prob. 2YTCh. 3.4 - Prob. 3YTCh. 3.4 - Prob. 4YTCh. 3.4 - Prob. 5YTCh. 3.4 - Prob. 6YTCh. 3.4 - Prob. 7YTCh. 3.4 - Find for each of the following...Ch. 3.4 - Prob. 2WECh. 3.4 - Prob. 3WECh. 3.4 - Prob. 4WECh. 3.4 - 1. By considering, but not calculating, the slope...Ch. 3.4 - Prob. 2ECh. 3.4 - Prob. 3ECh. 3.4 - Prob. 4ECh. 3.4 - Prob. 5ECh. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Estimate the slope of the tangent line to each...Ch. 3.4 - Prob. 9ECh. 3.4 - Prob. 10ECh. 3.4 - Prob. 11ECh. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Prob. 19ECh. 3.4 - Using the definition of the derivative, find...Ch. 3.4 - Prob. 21ECh. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - For each function, find (a) the equation of the...Ch. 3.4 - Prob. 27ECh. 3.4 - Prob. 28ECh. 3.4 - Prob. 29ECh. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Find the x-values where the following do not have...Ch. 3.4 - Find the x-values where the following do not have...Ch. 3.4 - Prob. 37ECh. 3.4 - Find the x-values where the following do not have...Ch. 3.4 - Prob. 39ECh. 3.4 - In Exercises 40 and 41, tell which graph, (a) or...Ch. 3.4 - Prob. 41ECh. 3.4 - Prob. 42ECh. 3.4 - Prob. 43ECh. 3.4 - Prob. 44ECh. 3.4 - Prob. 45ECh. 3.4 - Prob. 46ECh. 3.4 - Prob. 47ECh. 3.4 - Prob. 48ECh. 3.4 - 49. Demand Suppose the demand for a certain item...Ch. 3.4 - Prob. 50ECh. 3.4 - Prob. 51ECh. 3.4 - 52. Cost The cost in dollars of producing x tacos...Ch. 3.4 - Prob. 54ECh. 3.4 - Prob. 55ECh. 3.4 - Prob. 56ECh. 3.4 - Prob. 57ECh. 3.4 - Prob. 58ECh. 3.4 - Prob. 59ECh. 3.4 - Prob. 60ECh. 3.4 - Prob. 61ECh. 3.5 - YOUR TURN 1 Sketch the graph of the derivative of...Ch. 3.5 - Prob. 2YTCh. 3.5 - Prob. 1WECh. 3.5 - Prob. 2WECh. 3.5 - Prob. 1ECh. 3.5 - Prob. 2ECh. 3.5 - Prob. 3ECh. 3.5 - Prob. 4ECh. 3.5 - Prob. 5ECh. 3.5 - Prob. 6ECh. 3.5 - Prob. 7ECh. 3.5 - Sketch the graph of the derivative for each...Ch. 3.5 - Sketch the graph of the derivative for each...Ch. 3.5 - Prob. 10ECh. 3.5 - Prob. 11ECh. 3.5 - Sketch the graph of the derivative for each...Ch. 3.5 - Prob. 13ECh. 3.5 - Prob. 14ECh. 3.5 - Prob. 15ECh. 3.5 - Prob. 16ECh. 3.5 - Business and Economics
17. Consumer Demand When...Ch. 3.5 - Prob. 18ECh. 3.5 - Prob. 19ECh. 3.5 - 20. Flight Speed The graph below shows the...Ch. 3.5 - Prob. 21ECh. 3.5 - 22. Weight Gain The graph below shows the typical...Ch. 3.5 - Prob. 23ECh. 3.5 - Prob. 24ECh. 3 - Prob. 1RECh. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - Determine whether each of the following statements...Ch. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - Prob. 10RECh. 3 - Prob. 11RECh. 3 - Prob. 12RECh. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RECh. 3 - Prob. 23RECh. 3 - Prob. 24RECh. 3 - Prob. 25RECh. 3 - Prob. 26RECh. 3 - Prob. 27RECh. 3 - Prob. 28RECh. 3 - Prob. 29RECh. 3 - Prob. 30RECh. 3 - Prob. 31RECh. 3 - Prob. 32RECh. 3 - Prob. 33RECh. 3 - Prob. 34RECh. 3 - Prob. 35RECh. 3 - Prob. 36RECh. 3 - Prob. 37RECh. 3 - Prob. 38RECh. 3 - Prob. 39RECh. 3 - Prob. 40RECh. 3 - Prob. 41RECh. 3 - Prob. 42RECh. 3 - Prob. 43RECh. 3 - Prob. 44RECh. 3 - Prob. 45RECh. 3 - Prob. 46RECh. 3 - Prob. 47RECh. 3 - Prob. 48RECh. 3 - Prob. 49RECh. 3 - Prob. 50RECh. 3 - Prob. 51RECh. 3 - Prob. 52RECh. 3 - Prob. 53RECh. 3 - Prob. 54RECh. 3 - Prob. 55RECh. 3 - Prob. 56RECh. 3 - Prob. 57RECh. 3 - Prob. 58RECh. 3 - Prob. 59RECh. 3 - Prob. 60RECh. 3 - Prob. 61RECh. 3 - Prob. 62RECh. 3 - Prob. 63RECh. 3 - Prob. 64RECh. 3 - Prob. 65RECh. 3 - Prob. 66RECh. 3 - Prob. 67RECh. 3 - Prob. 68RECh. 3 - Prob. 69RECh. 3 - Prob. 70RECh. 3 - Prob. 71RECh. 3 - Prob. 72RECh. 3 - Prob. 73RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Provethat a) prove that for any irrational numbers there exists? asequence of rational numbers Xn converg to S. b) let S: RR be a sunctions-t. f(x)=(x-1) arc tan (x), xe Q 3(x-1) 1+x² x&Q Show that lim f(x)= 0 14x C) For any set A define the set -A=yarrow_forwardQ2: Find the interval and radius of convergence for the following series: Σ n=1 (-1)η-1 xn narrow_forward8. Evaluate arctan x dx a) xartanx 2 2 In(1 + x²) + C b) xartanx + 1½-3ln(1 + x²) + C c) xartanx + In(1 + x²) + C d) (arctanx)² + C 2 9) Evaluate Inx³ dx 3 a) +C b) ln x² + C c)¾½ (lnx)² d) 3x(lnx − 1) + C - x 10) Determine which integral is obtained when the substitution x = So¹² √1 - x²dx sine is made in the integral πT π π a) √ sin cos e de b) √ cos² de c) c Ꮎ Ꮎ cos² 0 de c) cos e de d) for cos² e de πT 11. Evaluate tan³xdx 1 a) b) c) [1 - In 2] 2 2 c) [1 − In2] d)½½[1+ In 2]arrow_forward12. Evaluate ſ √9-x2 -dx. x2 a) C 9-x2 √9-x2 - x2 b) C - x x arcsin ½-½ c) C + √9 - x² + arcsin x d) C + √9-x2 x2 13. Find the indefinite integral S cos³30 √sin 30 dᎾ . 2√√sin 30 (5+sin²30) √sin 30 (3+sin²30) a) C+ √sin 30(5-sin²30) b) C + c) C + 5 5 5 10 d) C + 2√√sin 30 (3-sin²30) 2√√sin 30 (5-sin²30) e) C + 5 15 14. Find the indefinite integral ( sin³ 4xcos 44xdx. a) C+ (7-5cos24x)cos54x b) C (7-5cos24x)cos54x (7-5cos24x)cos54x - 140 c) C - 120 140 d) C+ (7-5cos24x)cos54x e) C (7-5cos24x)cos54x 4 4 15. Find the indefinite integral S 2x2 dx. ex - a) C+ (x²+2x+2)ex b) C (x² + 2x + 2)e-* d) C2(x²+2x+2)e¯* e) C + 2(x² + 2x + 2)e¯* - c) C2x(x²+2x+2)e¯*arrow_forward4. Which substitution would you use to simplify the following integrand? S a) x = sin b) x = 2 tan 0 c) x = 2 sec 3√√3 3 x3 5. After making the substitution x = = tan 0, the definite integral 2 2 3 a) ៖ ស្លឺ sin s π - dᎾ 16 0 cos20 b) 2/4 10 cos 20 π sin30 6 - dᎾ c) Π 1 cos³0 3 · de 16 0 sin20 1 x²√x²+4 3 (4x²+9)2 π d) cos²8 16 0 sin³0 dx d) x = tan 0 dx simplifies to: de 6. In order to evaluate (tan 5xsec7xdx, which would be the most appropriate strategy? a) Separate a sec²x factor b) Separate a tan²x factor c) Separate a tan xsecx factor 7. Evaluate 3x x+4 - dx 1 a) 3x+41nx + 4 + C b) 31n|x + 4 + C c) 3 ln x + 4+ C d) 3x - 12 In|x + 4| + C x+4arrow_forward1. Abel's Theorem. The goal in this problem is to prove Abel's theorem by following a series of steps (each step must be justified). Theorem 0.1 (Abel's Theorem). If y1 and y2 are solutions of the differential equation y" + p(t) y′ + q(t) y = 0, where p and q are continuous on an open interval, then the Wronskian is given by W (¥1, v2)(t) = c exp(− [p(t) dt), where C is a constant that does not depend on t. Moreover, either W (y1, y2)(t) = 0 for every t in I or W (y1, y2)(t) = 0 for every t in I. 1. (a) From the two equations (which follow from the hypotheses), show that y" + p(t) y₁ + q(t) y₁ = 0 and y½ + p(t) y2 + q(t) y2 = 0, 2. (b) Observe that Hence, conclude that (YY2 - Y1 y2) + P(t) (y₁ Y2 - Y1 Y2) = 0. W'(y1, y2)(t) = yY2 - Y1 y2- W' + p(t) W = 0. 3. (c) Use the result from the previous step to complete the proof of the theorem.arrow_forward2. Observations on the Wronskian. Suppose the functions y₁ and y2 are solutions to the differential equation p(x)y" + q(x)y' + r(x) y = 0 on an open interval I. 1. (a) Prove that if y₁ and y2 both vanish at the same point in I, then y₁ and y2 cannot form a fundamental set of solutions. 2. (b) Prove that if y₁ and y2 both attain a maximum or minimum at the same point in I, then y₁ and Y2 cannot form a fundamental set of solutions. 3. (c) show that the functions & and t² are linearly independent on the interval (−1, 1). Verify that both are solutions to the differential equation t² y″ – 2ty' + 2y = 0. Then justify why this does not contradict Abel's theorem. 4. (d) What can you conclude about the possibility that t and t² are solutions to the differential equation y" + q(x) y′ + r(x)y = 0?arrow_forwardQuestion 4 Find an equation of (a) The plane through the point (2, 0, 1) and perpendicular to the line x = y=2-t, z=3+4t. 3t, (b) The plane through the point (3, −2, 8) and parallel to the plane z = x+y. (c) The plane that contains the line x = 1+t, y = 2 − t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1. (d) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1+t, and z = 2-t. (e) The plane that contains the lines L₁: x = 1 + t, y = 1 − t, z = 2t and L2 : x = 2 − s, y = s, z = 2.arrow_forwardPlease find all values of x.arrow_forward3. Consider the initial value problem 9y" +12y' + 4y = 0, y(0) = a>0: y′(0) = −1. Solve the problem and find the value of a such that the solution of the initial value problem is always positive.arrow_forward5. Euler's equation. Determine the values of a for which all solutions of the equation 5 x²y" + axy' + y = 0 that have the form (A + B log x) x* or Ax¹¹ + Bä” tend to zero as a approaches 0.arrow_forward4. Problem on variable change. The purpose of this problem is to perform an appropriate change of variables in order to reduce the problem to a second-order equation with constant coefficients. ty" + (t² − 1)y'′ + t³y = 0, 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSONCalculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY