Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 31, Problem 71AP

(a)

To determine

The maximum induced emf in the coil.

(a)

Expert Solution
Check Mark

Answer to Problem 71AP

The maximum induced emf in the coil is 36.0V.

Explanation of Solution

Let θ be the angle between the normal to the coil and the magnetic field.

At t=0, θ=0 and θ=ωt at later times.

Write the expression for the emf induced in the coil.

    ε=Nddt(ABcosθ)

Here, N is the number of the loops, A is the area of the loop, B is the magnetic field and θ is angle between normal to the area vector and magnetic field.

Substitute θ=ωt in the above expression to find ε.

    ε=Nddt(ABcosωt)=NABωsinωt                                                                                            (I)

Write the expression for the area of the loop.

    A=l.b                                                                                                                   (II)

Here, l is the length of the loop and b is the breadth of the loop.

The maximum value of sinθ is 1

Conclusion:

Substitute lb for A in equation (I) to find ε.

    ε=NlbBωsinωt                                                                                              (III)

Substitute 60 for N, 0.100m for l , 0.200m for b, 1.00T for B, 30.0rad/s for ω and 1 for sinωt in equation (III) to find ε.

    ε=60(0.100m)(0.200m)(1.00T)(30.0rad/s)=36.0V

Therefore, the maximum induced emf in the coil is 36.0V.

(b)

To determine

The maximum rate of change of magnetic flux through coil.

(b)

Expert Solution
Check Mark

Answer to Problem 71AP

The maximum rate of change of magnetic flux through coil is 0.60Wb/s

Explanation of Solution

Write the expression for the rate of change of magnetic flux.

    dϕBdt=d(BAcosθ)dt=Blbωsinωt                                                                                            (IV)

The minimum value of sinθ is 1.

Conclusion:

Substitute , 0.100m for l , 0.200m for b, 1.00T for B, 30.0rad/s for ω and 1 for sinωt in equation (IV) to find dϕBdt.

    dϕBdt=(0.100m)(0.200m)(1.00T)(30.0rad/s)(1)=0.60Tm2/s(1Wb1Tm2)=0.60Wb/s

Therefore, the maximum rate of change of magnetic flux through coil is 0.60Wb/s

(c)

To determine

The emf induced at t=0.05s.

(c)

Expert Solution
Check Mark

Answer to Problem 71AP

The emf induced at t=0.05s is 35.9V

Explanation of Solution

At t=0.05s,

    θ=(30.0rad/s)(0.05s)=1.5rad=1.5×57.2958=85.9°

Conclusion:

Substitute 60 for N, 0.100m for l , 0.200m for b, 1.00T for B, 30.0rad/s for ω and 85.9° for ωt in equation (III) to find ε.

    ε=60(0.100m)(0.200m)(1.00T)(30.0rad/s)sin(85.9°)=35.9V

Therefore, the emf induced at t=0.05s is 35.9V

(d)

To determine

The torque exerted on the coil by the magnetic field when the emf is maximum.

(d)

Expert Solution
Check Mark

Answer to Problem 71AP

The torque exerted on the coil by the magnetic field when the emf is maximum is 4.32Nm.

Explanation of Solution

The emf induced is maximum when θ=90°.

Write the expression for the torque.

    τ=BINAsinθ=ΝεmaxlbBR                                                                                                    (V)

Here, R is the resistance of the coil.

Conclusion:

Substitute 60 for N, 36.0V for εmax, 0.100m for l, 0.200m for b, 1.00T for B and 10.0Ω for R in the equation (V) to find τ.

    τ=60(36.0V)(0.100m)(0.200m)(1.00T)10.0Ω=4.32Nm

Therefore, the torque exerted on the coil by the magnetic field when the emf is maximum is 4.32Nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Taking a Hike A hiker begins a trip by first walking 21.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 46.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. y (km) Can N W-DE 45.0° 60.0° Tent Tower B x (km) ☹ (a) Determine the components of the hiker's displacement for each day. SOLUTION Conceptualize We conceptualize the problem by drawing a sketch as in the figure. If we denote the displacement vectors on the first and second days by A and B, respectively, and use the ---Select-- as the origin of coordinates, we obtain the vectors shown in the figure. The sketch allows us to estimate the resultant vector as shown. Categorize Drawing the resultant R, we can now categorize this problem as one we've solved before: --Select-- of two vectors. You should now have a hint of the power of categorization in that many new problems are very similar to problems we have already solved if we are…
Plz plz no chatgpt pls will upvote .
You want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?

Chapter 31 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 31 - Prob. 6OQCh. 31 - Prob. 7OQCh. 31 - Prob. 8OQCh. 31 - Prob. 9OQCh. 31 - Prob. 10OQCh. 31 - Prob. 11OQCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQCh. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 10CQCh. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Scientific work is currently under way to...Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - A coil formed by wrapping 50 turns of wire in the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - A small airplane with a wingspan of 14.0 m is...Ch. 31 - A 2.00-m length of wire is held in an eastwest...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - The rotating loop in an AC generator is a square...Ch. 31 - Prob. 50PCh. 31 - Prob. 51APCh. 31 - Prob. 52APCh. 31 - Prob. 53APCh. 31 - Prob. 54APCh. 31 - Prob. 55APCh. 31 - Prob. 56APCh. 31 - Prob. 57APCh. 31 - Prob. 58APCh. 31 - Prob. 59APCh. 31 - Prob. 60APCh. 31 - Prob. 61APCh. 31 - Prob. 62APCh. 31 - Prob. 63APCh. 31 - Prob. 64APCh. 31 - Prob. 65APCh. 31 - Prob. 66APCh. 31 - Prob. 67APCh. 31 - A conducting rod moves with a constant velocity in...Ch. 31 - Prob. 69APCh. 31 - Prob. 70APCh. 31 - Prob. 71APCh. 31 - Prob. 72APCh. 31 - Prob. 73APCh. 31 - Prob. 74APCh. 31 - Prob. 75APCh. 31 - Prob. 76APCh. 31 - Prob. 77APCh. 31 - Prob. 78APCh. 31 - Prob. 79CPCh. 31 - Prob. 80CPCh. 31 - Prob. 81CPCh. 31 - Prob. 82CPCh. 31 - Prob. 83CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY