Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 66P
To determine
The energy difference between the ground state and the excited state obtained by the irradiation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain device for analyzing electromagnetic radiation is
based on the Bragg scattering of the radiation from a crystal.
For radiation of wavelength 0.149 nm, the first-order Bragg
peak appears centered at an angle of 15.15°. The aperture of
the analyzer passes radiation in the angular range of 0.015°.
What is the corresponding range of wavelengths passing
through the analyzer?
A beam of x rays with wavelengths ranging from 0.120 nm to 0.0700 nm scatters from a family of reflecting planes in a crystal. The plane separation is 0.250 nm. It is observed that scattered beams are produced for 0.100 nm and 0.0750 nm.What is the angle between the incident and scattered beams?
A diffraction grating of 6000 lines per centimeter normally has a deflection angle of 20 of the first-order diffraction fringe of light of incident wavelength. The surface of a metal alloy is illuminated by this light. The stopping potential for high energy photoelectrons is ф= -0.8eV. Find the energy of the electrons to break away from the metal.
Chapter 31 Solutions
Physics for Scientists and Engineers
Ch. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10P
Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - Prob. 49PCh. 31 - Prob. 50PCh. 31 - Prob. 51PCh. 31 - Prob. 52PCh. 31 - Prob. 53PCh. 31 - Prob. 54PCh. 31 - Prob. 55PCh. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - Prob. 58PCh. 31 - Prob. 59PCh. 31 - Prob. 60PCh. 31 - Prob. 61PCh. 31 - Prob. 62PCh. 31 - Prob. 63PCh. 31 - Prob. 64PCh. 31 - Prob. 65PCh. 31 - Prob. 66PCh. 31 - Prob. 67PCh. 31 - Prob. 68PCh. 31 - Prob. 69PCh. 31 - Prob. 70PCh. 31 - Prob. 71PCh. 31 - Prob. 72PCh. 31 - Prob. 73PCh. 31 - Prob. 74PCh. 31 - Prob. 75PCh. 31 - Prob. 76PCh. 31 - Prob. 77PCh. 31 - Prob. 78PCh. 31 - Prob. 79PCh. 31 - Prob. 80PCh. 31 - Prob. 81PCh. 31 - Prob. 82PCh. 31 - Prob. 83PCh. 31 - Prob. 84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. a) What are the energy and momentum of a photon of red light of wavelength 650 nm? (b) What is the wavelength of a photon of energy 2.40 eV?arrow_forwardProblem 1: If electromagnetic radiation with a photon energy of 20 meV impinges on two slits spaced 0.1 mm apart, find the angle between the center line and the 1 minimum and 1 maximum of the resulting interference pattern. Problem 2: A non-relativistic beam of electrons travels at 5% the speed of light and impinges on a slit that is 0.05 um wide. Use modern units (e.g eV, etc) to find thearrow_forwardIn a krypton laser, find the energy difference between the two levels involved in the production of red light of wavelength 647.1 nm by this system.arrow_forward
- X-rays with wavelengths of 128 pm was used to study a crystal which produced a reflection of 15.8 degrees. Assuming first order diffraction (n = 1), what is the distance between the planes of atoms (d)?arrow_forwardX-ray beams are reflected from a crystal by Bragg reflection. If the density of the crystal structure is measured with an rms error for 3 parts is 104. The angle the incident and reflected rays make with the crystal plan is 6oand is measured with an rms error of 3.4 minutes of arc. Calculate the rms error in the determination of the X-ray wavelength?arrow_forwardFirst-order Bragg scattering from a certain crystal occurs at an angle of incidence of 63.8°; see figure below. The wavelength of the x-rays is 0.261nm. Assuming that the scattering is from the dashed planes shown, find the unit cell size ao. 63.8° X raysarrow_forward
- The Bragg's angle in the first order for (220) reflection from nickel (FCC) is (38.2° ). When X-rays of wavelength 1.54 A° are employed in a diffraction experiment. Determine the lattice parameter of nickel?arrow_forwardThe red lasers used to read the barcodes of products at the grocery stores produce light with a wavelength of 633 nm. The electrical power consumption of a single grocery store laser is 5.00000 × 10-3 J s-1. If the laser is left on continuously for 365 days, what is the total amount of energy it emits as light? Assume that the laser works at 100% efficiency (i.e. all the electrical energy is converted to 633 nm light). Final answer should be in joules and with 6 significant digitsarrow_forwardAt λ0 = 820 nm the absorption loss of a fibre is 0.25 dB/km and the scattering loss is 2.25 dB/km. If the fibre is used instead at λ0 = 600 nm, and calorimetric measurements of the heat generated by light absorption give a loss of 2 dB/km, estimate the total attenuation at λ0 = 600 nm.arrow_forward
- A CD-ROM is used instead of a crystal in an electron diffraction experiment. The surface of the CD-ROM has tracks of tiny pits with a uniform spacing of 1.60 mm. (a) If the speed of the electrons is 1.26 X 104 m/s, at which values of q will the m = 1 and m = 2 intensity maxima appear? (b) The scattered electrons in these maxima strike at normal incidence a piece of photographic film that is 50.0 cm from the CD-ROM. What is the spacing on the film between these maxima?arrow_forwardProblem 01: An x-ray diffractometer (XRD) recorder chart for an element which has either the BCC or the FCC crystal structure showed diffraction peaks at the following 20 angles: 40.663°, 47.314°, 69.144°, and 83.448°. (The wavelength 2 of the incoming radiation was 0.15405 nm.) Now using the Bragg's law and d-spacing formula: (a) Generalize the concept of radius ratio identify the crystal structure of the element. (b) Determine the lattice constant of the element. (c) Identify the element use the data of the Table 1. (d) If you were told that the metal is palladium, would you be surprised? How do you identify the discrepancy? You can use this table for interpretation. Table: 1: Selected metals that have the BCC, FCC, HCP crystal structure at room temperature (20°C) and their lattice constant, atomic radius, density, melting point temperature. Lattice Constants 20°C, nm Melting Paint, °C Atomic Radins, nm Crystal Structuret (20°C) Element Symbol Aluminum AI Sb 660 Antimony Arsenic 630…arrow_forwardMonochromatic X-rays are incident on a crystal. The first-order Bragg peak is observed when the angle of incidence is 34.0°. The crystal spacing is known to be 0.347 nm. What is the wavelength of the X rays?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY