Use a calculator with a y x key or a ∧ key to solve Exercises 65-70. India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world’s population will live in these two countries alone. The exponential function f(x) ⋅ ⋅ 574(1.026) r models the population of India, f(x) . in millions, x years after 1974. a. Substitute 0 for x and, without using a calculator, find India’s population in 1974. b. Substitute 27 for x and use your calculator to find India's population, to the nearest million, in the year 2001 as modeled by this function. c. Find India’s population, to the nearest million, in the year 2028 as predicted by this function. d. Find India's population, to the nearest million, in the year 2055 as predicted by this function. c. What appears to be happening to India's population every 27 years?
Use a calculator with a y x key or a ∧ key to solve Exercises 65-70. India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world’s population will live in these two countries alone. The exponential function f(x) ⋅ ⋅ 574(1.026) r models the population of India, f(x) . in millions, x years after 1974. a. Substitute 0 for x and, without using a calculator, find India’s population in 1974. b. Substitute 27 for x and use your calculator to find India's population, to the nearest million, in the year 2001 as modeled by this function. c. Find India’s population, to the nearest million, in the year 2028 as predicted by this function. d. Find India's population, to the nearest million, in the year 2055 as predicted by this function. c. What appears to be happening to India's population every 27 years?
Solution Summary: The author explains how to calculate the population of India in 1974 when the function for increase in population after x years from 1974 is f(x)=574
Use a calculator with a
y
x
key or a
∧
key to solve Exercises 65-70.
India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world’s population will live in these two countries alone. The exponential function f(x)
⋅
⋅
574(1.026)r models the population of India, f(x). in millions, x years after 1974.
a. Substitute 0 for x and, without using a calculator, find India’s population in 1974.
b. Substitute 27 for x and use your calculator to find India's population, to the nearest million, in the year 2001 as modeled by this function.
c. Find India’s population, to the nearest million, in the year 2028 as predicted by this function.
d. Find India's population, to the nearest million, in the year 2055 as predicted by this function.
c. What appears to be happening to India's population every 27 years?
An airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west
at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane?
428 mph
41°
50 mph
a. The ground speed of the airplane is
b. The bearing of the airplane is
mph.
south of west.
Rylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach
one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck
starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a
horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate
a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The
angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude
and its direction angle from the positive x-axis.
119 lb
20.2°
377 lb
a. The resultant force is
(Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°))
b. It's magnitude is
lb.
c. It's angle from the positive x-axis is
Find a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14
and -3x - y + z = −21.
The equation of the plane is:
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY