Physics:f/sci.+engrs.,ap Ed.
10th Edition
ISBN: 9781337553469
Author: Jewett, SERWAY
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 34P
To determine
To show: The equation 31.24 in the text is Kirchhoff’s rule loops as applied to the circuit in Figure 31.15b are identical.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an A. C. circuit, the flowing current is
I = 5 sin (100 t - t/2) A and the potential
difference is V = 200 sin (100 t)V. The power
consumption is equal to
%3D
For the circuit in the figure, at t = 0 the switch S is closed
with the capacitor uncharged. If C = 56 µF, ɛ = 80V, and
R = 4 kQ, what is the charge (in mC) on the capacitor
when the current in the circuit is | = 8.6 mA?
%3D
S
C
Select one:
O A. 2.55
В. 3.09
Ос. 6.41
O D. 4.63
O E. 1.38
7
A
Z
S
30
H
command
9. An electric power station that operates at 35 kV and uses a 10:1 step-up ideal transformer is producing 34 MW (Mega-
Watt) of power that is to be sent to a big city which is located 300 km away with only 2.5% loss. Each of the two wires
are made of copper (resistivity = 1.72 x 10-22.m). What is the diameter of the wires?
X 0.85 cm
x
E
30
R
5
T
6
DEL
LL
B
MacBook Air
H
N
8
J
D
1
M
(
9
K
MOSISO
A
P
-
command
?
option
Chapter 31 Solutions
Physics:f/sci.+engrs.,ap Ed.
Ch. 31.1 - A coil with zero resistance has its ends labeled a...Ch. 31.2 - Prob. 31.2QQCh. 31.3 - Prob. 31.3QQCh. 31.4 - Prob. 31.4QQCh. 31.5 - (i) At an instant of time during the oscillations...Ch. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 31 - Prob. 4PCh. 31 - Prob. 5P
Ch. 31 - A toroid has a major radius R and a minor radius r...Ch. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10PCh. 31 - Prob. 11PCh. 31 - Show that i = Iiet/ is a solution of the...Ch. 31 - Prob. 13PCh. 31 - You are working as a demonstration assistant for a...Ch. 31 - Prob. 15PCh. 31 - The switch in Figure P31.15 is open for t 0 and...Ch. 31 - Prob. 17PCh. 31 - Two ideal inductors, L1 and L2, have zero internal...Ch. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Complete the calculation in Example 31.3 by...Ch. 31 - Prob. 23PCh. 31 - A flat coil of wire has an inductance of 40.0 mH...Ch. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - In the circuit of Figure P31.29, the battery emf...Ch. 31 - Prob. 30PCh. 31 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 31 - Prob. 32PCh. 31 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 31 - Prob. 34PCh. 31 - Electrical oscillations are initiated in a series...Ch. 31 - Review. Consider a capacitor with vacuum between...Ch. 31 - A capacitor in a series LC circuit has an initial...Ch. 31 - Prob. 38APCh. 31 - Prob. 39APCh. 31 - At the moment t = 0, a 24.0-V battery is connected...Ch. 31 - Prob. 41APCh. 31 - You are working on an LC circuit for an experiment...Ch. 31 - Prob. 43APCh. 31 - Prob. 44APCh. 31 - Prob. 45APCh. 31 - At t = 0, the open switch in Figure P31.46 is...Ch. 31 - Review. The use of superconductors has been...Ch. 31 - Review. A fundamental property of a type 1...Ch. 31 - Prob. 49APCh. 31 - In earlier times when many households received...Ch. 31 - Assume the magnitude of the magnetic field outside...Ch. 31 - Prob. 52CPCh. 31 - Prob. 53CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For the circuit in the figure, at t = 0 the switch S is closed with the capacitor uncharged. If C = 48 µF, ɛ = 80V, and R = 4 kQ, what is the charge (in mC) on the capacitor when the current in the circuit is | = 7 mA? %3D %D S R Select one: O A. 1.49 Ов. 4.27 Ос. 2.50 OD. 2.95 O E. 5.18arrow_forwarda. Consider the current configuration shown below. What is the magnitude of the cur- rent in the wire marked with a question mark? Is the current entering or leaving the node? 2.20 A 1.40 A 1.50 A- Current configurations for #1d b. Consider the single loop circuit shown below. Calculate the current which flows in the circuit. Is the current in the clockwise or the counterclockwise direction? 120 2 90 Ω 5.5 V 180 Ω Single loop circuit configurations for #1barrow_forwardFor the circuit in the figure, at t = 0 the switch S is closed with the capacitor uncharged. If C = 55 µF, ɛ = 80V, and R = 4 kN, what is the charge (in mC) on the capacitor when the current in the circuit is = 3.5 mA? S R + Select one: O A. 5.67 ОВ. 4.15 OC. 5.17 O D. 3.63 E. 2.48arrow_forward
- The I vs t graph shown below is for an LR circuit without a battery. I (A) 14/ 10.5 7. 3.5 1.5 3. 4.5 6. 7.5 t(s) Determine the time constant of the LR circuit. T = If L = 10 H, determine R. R = er resistors from highest to lowarrow_forwardSome surgery is performed with high-voltage electricity passing from a metal scalpel through the tissue being cut. Considering the nature of electric fields at the surface of conductors, why would you expect most of the current to flow from the sharp edge of the scalpel? Do you think high- or low-frequency AC is used?arrow_forwardYou are working as a demonstration assistant for a physics professor. He shows you the circuit in Figure P31.14, which he wants you to build for an upcoming class. The lightbulb is a household incandescent bulb that receives energy at the rate of 40.0 W when operating at 120 V. It has a resistance Ry, which, for simplicity, we will assume is constant at all operating voltages. The battery in the circuit has an emf of 12.0 V. When the switch has been closed for a long time, the bulb glows dimly, since it is powered by only 12.0 V. When the switch is opened, however, the bulb flashes brightly and then gradually dims to darkness. Your professor wants you to determine two values: (a) the resistance R, that is neces- sary for the bulb to initially flash, when the switch is opened, at the same brightness it would have if plugged into a 120-V socket; (b) the inductance L necessary to keep the current in the lightbulb above 50.0% of its value when the switch is opened, for a time interval of…arrow_forward
- Q17arrow_forwardA rectangular metal loop with 0.050Ω resistance is placed next to one wire of the RC circuit shown in the figure. The capacitor is charged to 20V with the polarity shown, then the switch is closed at t = 0s. What is the direction of current in the loop for t > 0s? What is the current in the loop at t = 5.0μs? Assume that only the circuit wire next to the loop is close enough to produce a significant magnetic field.arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where R = 14.0 Ω and C = 3.00 ×10^-6 F. The switch S is closed at t = 0. When the current in the circuit has magnitude 3.00 A, the charge on the capacitor is 40.0 × 10^−6 C. At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10^-6 C? When the current has magnitude 3.00 A, at what rate is energy being stored in the capacitor?arrow_forward
- In an RLC series circuit, L = 1H, R = 42, C = 0.5F and the voltage in a circuit is V(t) = 2 cos 2t volts. The charge q on a plate of a condenser is given by the differential equation dq L + R + q = V(t). Solve the dt2 differential equation for qarrow_forwardhelparrow_forwardAnswer and analyze the circuit by using KVL and KCL : Observe the numbering1. Circuit that is plain black and white2. Circuit that has blue elementsSolve for all the branch currents and voltage drops per resistance.Also get the total power consumed by the circuit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning