University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 31.11DQ
To determine
If the hair dryer inductance is considered whether it is increase or decrease the values of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A resistor and an inductor are wired in series with an ideal battery. The inductance of the inductor is 8.0 mH, and the resistance of the resistor is 2.0. Assume the battery is connected to the resistor and the inductor at t=0. How long does it take the current to reach half its final, steady value?
A battery is used to charge a capacitor. When the stored energy in the capacitor
is 1 µj, it is disconnected from the battery in the circuit and connected in series
with an inductor which has inductance of 6 µH. What is the current in the
inductor when the capacitor charge is half of its initial maximum value?
(Resistance is negligible.)
O 0.2 A
O 0.5 A
O v2 A
O 2 A
O 20 A
In a series RL circuit, the resistance is 135 ohms, the inductance is 120 x 10-3 H, and the source of electromotive force is ξ. After some time, the current in the circuit reaches its maximum value, and at this time the energy stored in the inductor is 230 x 10-3 J.
a) What is the value of ξ?
b) Next, we remove the electromotive force source and connect the inductor directly to the resistor. How long will it take for the energy stored in the inductor to decrease to half of its initial value?
Chapter 31 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 31.1 - The accompanying figure shows four different...Ch. 31.2 - An oscillating voltage of fixed amplitude is...Ch. 31.3 - Rank the following ac circuits in order of their...Ch. 31.4 - Prob. 31.4TYUCh. 31.5 - How does the resonance frequency of an L-R-C...Ch. 31.6 - Each of the following four transformers has 1000...Ch. 31 - Household electric power in most of western Europe...Ch. 31 - The current in an ac power line changes direction...Ch. 31 - In an ac circuit, why is the average power for an...Ch. 31 - Equation (31.14) was derived by using the...
Ch. 31 - Prob. 31.5DQCh. 31 - Equation (31.9) says that ab = L di/dt (see Fig....Ch. 31 - Is it possible for the power factor of an L-R-C...Ch. 31 - In an L-R-C series circuit, can the instantaneous...Ch. 31 - In an L-R-C series circuit, what are the phase...Ch. 31 - When an L-R-C series circuit is connected across a...Ch. 31 - Prob. 31.11DQCh. 31 - A light bulb and a parallel-plate capacitor with...Ch. 31 - A coil of wire wrapped on a hollow tube and a...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - A circuit consists of a light bulb, a capacitor,...Ch. 31 - Prob. 31.16DQCh. 31 - An ideal transformer has N1, windings in the...Ch. 31 - An inductor, a capacitor, and a resistor are all...Ch. 31 - You want to double the resonance angular frequency...Ch. 31 - Prob. 31.1ECh. 31 - A sinusoidal current i = I cos t has an rms value...Ch. 31 - The voltage across the terminals of an ac power...Ch. 31 - A capacitor is connected across an ac source that...Ch. 31 - An inductor with L = 9.50 mH is connected across...Ch. 31 - A capacitance C and an inductance L are operated...Ch. 31 - Kitchen Capacitance. The wiring for a refrigerator...Ch. 31 - (a) Compute the reactance of a 0.450-H inductor at...Ch. 31 - (a) What is the reactance of a 3.00-H inductor at...Ch. 31 - A Radio Inductor. You want the current amplitude...Ch. 31 - A 0.180-H inductor is connected in series with a...Ch. 31 - A 250- resistor is connected in series with a...Ch. 31 - A 150- resistor is connected in series with a...Ch. 31 - You have a 200- resistor, a 0.400-H inductor, and...Ch. 31 - The resistor, inductor, capacitor, and voltage...Ch. 31 - Prob. 31.16ECh. 31 - In an L-R-C series circuit, the rms voltage across...Ch. 31 - A resistor with R = 300 and an inductor are...Ch. 31 - The power of a certain CD player operating at 120...Ch. 31 - In an L-R-C series circuit, the components have...Ch. 31 - (a) Show that for an L-R-C series circuit the...Ch. 31 - (a) Use the results of part (a) of Exercise 31.21...Ch. 31 - An L-R-C series circuit with L = 0.120 H, R = 240...Ch. 31 - An L-R-C series circuit is connected to a 120-Hz...Ch. 31 - A series ac circuit contains a 250- resistor, a...Ch. 31 - In an L-R-C series circuit the source is operated...Ch. 31 - Analyzing an L-R-C Circuit. You have a 200-...Ch. 31 - An L-R-C series circuit is constructed using a...Ch. 31 - In an L-R-C series circuit, R = 300, L = 0.400 H,...Ch. 31 - An L-R-C series circuit consists of a source with...Ch. 31 - In an L-R-C series circuit, R = 150 , L = 0.750 H,...Ch. 31 - In an L-R-C series circuit, R = 400 , L = 0.350 H,...Ch. 31 - In an L-R-C series circuit, L = 0.280 H and C =...Ch. 31 - Section 31.6 Transformers 31.34Off to Europe! You...Ch. 31 - A Step-Down Transformer. A transformer connected...Ch. 31 - A Step-Up Transformer. A transformer connected to...Ch. 31 - A coil has a resistance of 48.0 . At a frequency...Ch. 31 - Prob. 31.38PCh. 31 - An L-R-C series circuit has C = 4.80 F, L = 0.520...Ch. 31 - Five infinite-impedance voltmeters, calibrated to...Ch. 31 - CP A parallel-plate capacitor having square plates...Ch. 31 - Prob. 31.42PCh. 31 - A series circuit has an impedance of 60.0 and a...Ch. 31 - A large electromagnetic coil is connected to a...Ch. 31 - In an L-R-C series circuit, R = 300 , XC = 300 ,...Ch. 31 - At a frequency 1, the reactance of a certain...Ch. 31 - A High-Pass Filter. One application of L-R-C...Ch. 31 - A Low-Pass Filter. Figure P31.48 shows a low-pass...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - An L-R-C series circuit is connected to an ac...Ch. 31 - In an L-R-C series circuit the magnitude of the...Ch. 31 - In an L-R-C series circuit, the phase angle is...Ch. 31 - An L-R-C series circuit has R = 500 . L = 2.00 H,...Ch. 31 - The L-R-C Parallel Circuit. A resistor, an...Ch. 31 - The impedance of an L-R-C parallel circuit was...Ch. 31 - A 400- resistor and a 6.00-F capacitor are...Ch. 31 - An L-R-C series circuit consists of a 2.50-F...Ch. 31 - An L-R-C series circuit has R = 60.0 , L = 0.800...Ch. 31 - In an L-R-C series circuit, the source has a...Ch. 31 - In an L-R-C series ac circuit, the source has a...Ch. 31 - A resistance R, capacitance C, and inductance L...Ch. 31 - The Resonance Width. Consider an L-R-C series...Ch. 31 - An L-R-C series circuit draws 220 W from a 120-V...Ch. 31 - DATA A coworker of yours was making measurements...Ch. 31 - DATA You are analyzing an ac circuit that contains...Ch. 31 - DATA You are given this table of data recorded for...Ch. 31 - CALC In an L-R-C series circuit the current is...Ch. 31 - CALC (a) At what angular frequency is the voltage...Ch. 31 - Prob. 31.69PPCh. 31 - If the electrode oscillates between two points 20...Ch. 31 - The signal from the oscillating electrode is fed...Ch. 31 - If the frequency at which the electrode is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the LC circuit in Figure 33.11, the inductance is L = 19.8 mH and the capacitance is C = 19.6 mF. At some moment, UB = UE= 17.5 mJ. a. What is the maximum charge stored by the capacitor? b. What is the maximum current in the circuit? c. At t = 0, the capacitor is fully charged. Write an expression for the charge stored by the capacitor as a function of lime. d. Write an expression for the current as a function of time.arrow_forwardWhen a wire carries an AC current with a known frequency, you can use a Rogowski coil to determine the amplitude Imax of the current without disconnecting the wire to shunt the current through a meter. The Rogowski coil, shown in Figure P23.8, simply clips around the wire. It consists of a toroidal conductor wrapped around a circular return cord. Let n represent the number of turns in the toroid per unit distance along it. Let A represent the cross-sectional area of the toroid. Let I(t) = Imax sin t represent the current to be measured. (a) Show that the amplitude of the emf induced in the Rogowski coil is Emax=0nAImax. (b) Explain why the wire carrying the unknown current need not be at the center of the Rogowski coil and why the coil will not respond to nearby currents that it does not enclose. Figure P23.8arrow_forwardAn inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is V/R. (b) The voltage across the inductor is zero, (c) The current in the circuit is zero, (d) The voltage across the resistor is V (e) The voltage across the inductor is half its maximum value.arrow_forward
- (i) When a particular inductor is connected to a source of sinusoidally varying emf with constant amplitude and a frequency of 60.0 Hz, the rms current is 3.00 A. What is the rms current if the source frequency is doubled? (a) 12.0 A (b) 6.00 A (c) 4.24 A (d) 3.00 A (e) 1.50 A (ii) Repeat part (i) assuming the load is a capacitor instead of an inductor. (iii) Repeat part (i) assuming the load is a resistor instead of an inductor.arrow_forwardA 10.00 μF capacitor C is initially charged to a voltage V of 10.00 (V). It is then connected in series with an inductor L. Charge and current oscillations ensue. (a) What is the total energy U of the circuit? (b) If the maximum current in the inductor is Im = 0.500 (A), then what is the inductance L? What is the charge Q on the positive plate of the capacitor when the current reaches its maximum value Im? (c) What is the angular frequency of the charge oscillations?arrow_forwardA resistor and inductor are connected to a 9.0 V battery by a switch as shown. The moment the switch is closed, current flows through the circuit. The resistor has a resistance of R = 470 Q and the inductor has an inductance of L = 0.115 H. %3D R = 9.0V a) What is the time constant (t=L/R) of the circuit? In which direction does current flow in this circuit? b) When the switch is first closed, what is the direction of the induced emf across L? What is the maximum current in this circuit? c) What is the potential difference across the inductor L after the switch has been closed a long time (t >0)? 000000arrow_forward
- An inductor has a current I(t) = (0.480 A) cos[(260 s-1)t] flowing through it. If the maximum emf %3D across the inductor is equal to 0.530 V, what is the self-inductance of the inductor, in mH? A 110-V hair dryer is rated at 1200 W. What current will it draw when operating from a 110-V electrical outlet? A small glass bead has been charged to 4.5 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4nE 0 = 8.99 x 10° N. m2/C2) %3Darrow_forwardA resistor and inductor are connected to a 9.0 V battery by a switch as shown. The moment the switch is closed, current flows through the circuit. The resistor has a resistance of R = 440 Ω and the inductor has an inductance of L = 150 mH. a) write an equation that relates the current as a function of time i(t) to the maximum current, imax. Express the equation in terms of imax and α, where α = -t/T (time constant). b) determine the time, in seconds, at which the current has a value of i(t50) = 50% of imax. c) determine the time, in seconds, at which the current has a value of i(t99) = 99% of imax.arrow_forwardAn LR circuit is hooked up to a battery which the switch initially open. The resistance in the circuit is R = 110 Ohm, the inductance is L=4.80H, and battery maintains a voltage of E=47.0V. At time t=0 the switch is closed. What is the current through the circuit after the switch has been closed for t=2.66 times 10-2s? What is the voltage across the inductor after the switch has been closed for t=2.66 times 10-2 seconds?arrow_forward
- For the RL circuit shown in the figure below, let the inductance be 2.75 H, the resistance 7.15 N, and the battery emf 36.0 V. S R (a) Calculate AVR/E,, that is, the ratio of the potential difference across the resistor to the emf across the inductor when the current is 2.00 A. Δν, (b) Calculate the emf across the inductor when the current is 4.50 A. V llarrow_forwardIn the circuit shown in the figure, the inductor has inductance L = 4.00 H and negligible internal resistance. The battery has a voltage of V = 11.0 V and is connected in series to a resistor of resistance R₁ = 15.02. A second resistor has a resistance of = 145. R2 The switch S has been closed for a long time. At time t = 0, the switch is opened. L R₁ ми What is the current 16,0 in the battery, the current 12,0 in resistor R2, and the current ILO in the inductor at t = 0. What is the current Ib,∞ in the battery, the current 12,00 in resistor R2, and the current IL,∞ in the inductor after the switch is opened for a long time (i.e., t = ∞). 1.0 Ib,0 = A Ib,co = 12.0 = A 12,00 = A IL,O= A IL,00 = A A R₁₂arrow_forwardTwo inductors are placed in a circuit in series with each other. Inductor 1 has an inductance of 3.5e-3 H and inductor 2 has an inductance of 4.7e-6 H. Anytime current is running through the inductors, what is the ratio of energy stored in inductor 1 compared to inductor 2? U1 is the energy in inductor 1 and U2 is the energy in inductor 2. U1 = 25.36 U2 U1 = 1.55e-3 U2 U1 = 744.68 U2 U1 = 3.93e-2 U2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning