
(a)
Find the expression for magnitudes of the magnetic field in each of the four layers.
(a)

Answer to Problem 27PQ
The expression for magnitudes of the magnetic field in each of the four layers are
Explanation of Solution
Write the expression for Ampere’s Law for the area bounded by the curve as.
Rearrange above equation for
Here,
Write the expression for current density as.
Here,
Write the expression for area of the circle as.
Substitute
Consider that the inner coaxial cable of radius
Write the expression for Amperian loop current as.
Substitute
Write the expression for Amperian loop is the circumferences of the circle as.
Substitute
Rearrange the above equation as.
Thus, the magnitude of the magnetic field in inner layer
Consider the inside insulator coaxial
The current in the loop is product of current density and area of loop is
The length of Ameprian loop is equal to the circumferences of the circle that is
Substitute
Thus, the magnitude of the magnetic field in inside insulator layer is
Consider the outer coaxial of radius
Write the current density of the layer
Substitute
Write the expression for Amperian loop current as.
Substitute
Substitute
Here,
Thus, the magnetic field on the third layer is
Write the expression for net magnetic field at the layer
Substitute
The net current enclosed inside the coaxial cable is zero.
Thus, the magnitude of the magnetic field outside the insulator layer is zero that is
Conclusion:
Thus, the expression for magnitudes of the magnetic field in each of the four layers are
(b)
Compare the part a results with the magnetic field produced by a long, straight wire and explain the advantage of using a coax.
(b)

Answer to Problem 27PQ
The expression for magnitude of the magnetic field for long straight current carrying wire is equal to the magnitude of the magnetic field in inside insulator layer.
Explanation of Solution
Write the expression for the magnetic field strength (magnitude) produced by a long straight current-carrying wire as.
The expression for long straight current carrying wire is equal to the magnitude of the magnetic field in inside insulator layer.
The advantage of using of coaxial cable as:
- 1. The inner conductor is in a Faraday shield, noise immunity is improved, and coax has lower error rates and therefore slightly better performance than twisted-pair.
- 2. Coax provides sufficient frequency range to support multiple channel, which allows for much greater throughput.
- 3. It also provides greater spacing between amplifiers coax's cable shielding reduces noise and crosstalk
Conclusion:
Thus, the expression for magnitude of the magnetic field for long straight current carrying wire is equal to the magnitude of the magnetic field in inside insulator layer.
Want to see more full solutions like this?
Chapter 31 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
- 8 Two moving charged particles exert forces on each other because each creates a magnetic field that acts on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third law if and only if rx (vi × 2) = 0.arrow_forward6 The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about (a) (b) the point (2, -1, 5). Careful about the direction of ŕ between the two points. the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).arrow_forward5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward
- 1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forwardA ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





