Numerical Methods For Engineers, 7 Ed
Numerical Methods For Engineers, 7 Ed
7th Edition
ISBN: 9789352602131
Author: Canale Chapra
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 31, Problem 12P
To determine

To calculate: The temperature distribution in a rod as shown in figure below with internal heat generation using the finite-element method and also derive the element nodal equations using Fourier heat conduction.

Numerical Methods For Engineers, 7 Ed, Chapter 31, Problem 12P , additional homework tip  1

Expert Solution & Answer
Check Mark

Answer to Problem 12P

Solution: The temperature distribution in a rod at various nodes is shown below,

Numerical Methods For Engineers, 7 Ed, Chapter 31, Problem 12P , additional homework tip  2

Explanation of Solution

Given Information:

To develop nodal equations for the temperature and their gradients at each of the six nodes. The element nodal equations is given as,

qk=kAdTx

With the heat conservation relationships is,

[qk+f(x)]=0

Here,

qk=heat flow(W)k=thermal conductivity(WmoC)A=cross-sectional area(m2)f(x)=heat source(Wcm)

The given rod is 50 cm long, the x-coordinate is positive to the right end and zero at the left end, kA=100 and 50 Wm/°C at x=0 and at x=50 respectively. The given data are,

kA=100,f(x)=3WcmT|x=0=100 oC, T|x=50=50 oC

Calculation:

The element 1 the equations for the node 1 and node 2 is,

Solve the equation for node 1,

qk+f(x)=0(kAdTdx|1+kA(1x2x1)(T2T1))+x1x2N1f(x)dx=0(kAdTdx|1+kA(1x2x1)(T2T1))+x1x2(x2xx2x1)f(x)dx=0

Substitute the value from given data,

((100)dTdx|1+(9510)(T2T1))+010(10x100)30dx=0((100)dTdx|1+9.5(T2T1))+3[10xx22]010=0

Change the temperature so the equation becomes,

9.5(T1T2)=(100)dTdx|1+150

Solve the equation for the node 2,

qk+f(x)=0(kAdTdx|2+kA(1x2x1)(T2T1))+x1x2N2f(x)dx=0(kAdTdx|2+kA(1x2x1)(T2T1))+x1x2(xx2x2x1)f(x)dx=0

Substitute the values from given data,

(90dTdx|1+(9510)(T2T1))+010(x0100)30dx=0(90dTdx|2+9.5(T2T1))+3[x22]010=0(90dTdx|2+9.5(T2T1))+3[1002]=0(90dTdx|2+9.5(T2T1))+150=0

So, the equation of node 2 is,

9.5(T2T1)=90dTdx|2+150

Similarly, the value for other nodes is calculated. For element 2 at node 2,

qk+f(x)=0(kAdTdx|2+kA(1x2x1)(T3T2))+x1x2N1f(x)dx=0(kAdTdx|2+kA(1x2x1)(T3T2))+x1x2(x2xx2x1)f(x)dx=0

Substitute the values from given data,

(90dTdx|2+(8510)(T3T2))+010(10x100)30dx=0((90)dTdx|2+8.5(T3T2))+3[10xx22]010=0(90dTdx|2+8.5(T3T2))+3[50]=0((90)dTdx|2+8.5(T3T2))+150=0

Change the state so the equation becomes,

8.5(T2T3)=90dTdx|2+150

Derive for node 3,

qk+f(x)=0(kAdTdx|3+kA(1x2x1)(T2T3))+x1x2N2f(x)dx=0(kAdTdx|3+kA(1x2x1)(T2T3))+x1x2(xx2x2x1)f(x)dx=0

Substitute the values from given data,

(80dTdx|3+(8510)(T2T3))+010(x0100)30dx=0(80dTdx|3+8.5(T2T3))+3[x22]010=0(80dTdx|3+8.5(T2T3))+3[1002]=0(80dTdx|3+8.5(T2T3))+150=0

So, the equation of node 3 is,

8.5(T2T3)=80dTdx|3+150

Derive the equation for the element 3,

Node 3

qk+f(x)=0(kAdTdx|3+kA(1x2x1)(T3T4))+x1x2N1f(x)dx=0(kAdTdx|3+kA(1x2x1)(T3T4))+x1x2(x2xx2x1)f(x)dx=0

Substitute the values from given data,

(80dTdx|3+(7510)(T3T4))+010(10x100)30dx=0(80dTdx|3+7.5(T3T4))+3[10xx22]010=0(80dTdx|3+7.5(T3T4))+3[50]=0((80)dTdx|3+7.5(T3T4))+150=0

Change the state so the equation becomes,

7.5(T3T4)=80dTdx|3+150

Derive for node 4,

qk+f(x)=0(kAdTdx|4+kA(1x2x1)(T3T4))+x1x2N2f(x)dx=0(kAdTdx|4+kA(1x2x1)(T3T4))+x1x2(xx2x2x1)f(x)dx=0

Substitute the values from given data,

(70dTdx|4+(7510)(T3T4))+010(x0100)30dx=0(70dTdx|4+7.5(T3T4))+3[x22]010=0(70dTdx|4+7.5(T3T4))+3[1002]=0(70dTdx|4+7.5(T3T4))+150=0

So, the equation of node 4 is,

7.5(T3T4)=70dTdx|4+150

Derive the equation for the element 4,

The equations for node 4 is,

qk+f(x)=0(kAdTdx|4+kA(1x2x1)(T5T4))+x1x2N1f(x)dx=0(kAdTdx|4+kA(1x2x1)(T5T4))+x1x2(x2xx2x1)f(x)dx=0

Substitute the values from given data,

(70dTdx|4+(6510)(T5T4))+010(10x100)30dx=0(70dTdx|4+6.5(T5T4))+3[10xx22]010=0(70dTdx|4+6.5(T5T4))+3[50]=0((70)dTdx|4+6.5(T5T4))+150=0

Change the state so the equation becomes,

6.5(T4T5)=70dTdx|4+150

Derive the equation for the node 5,

qk+f(x)=0(kAdTdx|5+kA(1x2x1)(T4T5))+x1x2N2f(x)dx=0(kAdTdx|5+kA(1x2x1)(T4T5))+x1x2(xx2x2x1)f(x)dx=0

Substitute the values from given data,

(60dTdx|5+(6510)(T4T5))+010(x0100)30dx=0(60dTdx|5+6.5(T4T5))+3[x22]010=0(60dTdx|5+6.5(T4T5))+3[1002]=0(60dTdx|5+6.5(T4T5))+150=0

So, the equation of node 5 is,

6.5(T3T4)=60dTdx|5+150

Derive the equation for the element 5,

For node 5,

qk+f(x)=0(kAdTdx|5+kA(1x2x1)(T6T5))+x1x2N1f(x)dx=0(kAdTdx|5+kA(1x2x1)(T6T5))+x1x2(x2xx2x1)f(x)dx=0

Substitute the values from given data,

(60dTdx|5+(5510)(T6T5))+010(10x100)30dx=0(60dTdx|4+5.5(T6T5))+3[10xx22]010=0(60dTdx|4+5.5(T6T5))+3[50]=0((60)dTdx|4+5.5(T6T5))+150=0

Change the state so the equation becomes,

5.5(T5T6)=60dTdx|5+150

Derive the equation for node 6,

qk+f(x)=0(kAdTdx|6+kA(1x2x1)(T5T6))+x1x2N2f(x)dx=0(kAdTdx|6+kA(1x2x1)(T5T6))+x1x2(xx2x2x1)f(x)dx=0

Substitute the values from given data,

(50dTdx|6+(5510)(T5T6))+010(x0100)30dx=0(50dTdx|5+5.5(T5T6))+3[x22]010=0(50dTdx|5+5.5(T5T6))+3[1002]=0(50dTdx|5+5.5(T5T6))+150=0

So, the equation of node 6 is,

5.5(T5T6)=50dTdx|5+150

The equation assembly is given as,

[9.59.59.5188.58.5167.57.5146.56.5125.55.55.5][T1T2T3T4T5T6]={100dTdx|1+15030030030030050dTdx|6+150}

Insert the boundary conditions then the matrix becomes,

[1009.5188.58.5167.57.5146.56.51205.550][dTdx|1T2T3T4T5dTdx|6]={8001250300300575125}

Use MATLAB to write code for solving the matrix,

Numerical Methods For Engineers, 7 Ed, Chapter 31, Problem 12P , additional homework tip  3

The desired output is,

Numerical Methods For Engineers, 7 Ed, Chapter 31, Problem 12P , additional homework tip  4

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
find stress at Q
I had a theoretical question about attitude determination. In the attached images, I gave two axis and angles. The coefficient of the axes are the same and the angles are the same. The only difference is the vector basis. Lets say there is a rotation going from n hat to b hat. Then, you introduce a intermediate rotation s hat. So, I want to know if the DCM produced from both axis and angles will be the same or not. Does the vector basis affect the numerical value of the DCM? The DCM formula only cares about the coefficient of the axis and the angle. So, they should be the same right?
3-15. A small fixed tube is shaped in the form of a vertical helix of radius a and helix angle y, that is, the tube always makes an angle y with the horizontal. A particle of mass m slides down the tube under the action of gravity. If there is a coefficient of friction μ between the tube and the particle, what is the steady-state speed of the particle? Let y γ 30° and assume that µ < 1/√3.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY