Calculus & Its Applications
15th Edition
ISBN: 9780137590896
Author: Larry J. Goldstein; David C. Lay; David I. Schneider; Nakhle H. Asmar; William Edward Tavernetti
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.1, Problem 11E
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Question 1. (10 points)
A researcher is studying tumours in mice. The growth rate for the volume of the tumour V(t) in cm³ is given by
dV
=
1.45V(2 In(V+1)).
dt
(a) (4 pts) Find all the equilibria and determine their stability using the stability condition.
(b) (2 pts) Draw the phase plot f(V) versus V where f(V) = V'. You may find it helpful to use Desmos or Wolfram Alpha to plot the graph of
f(V) versus V (both are free to use online), or you can plot it by hand if you like. On the plot identify each equilibrium as stable or unstable.
(c) (4 pts) Draw direction arrows for the case where the tumour starts at size 3cm³ and for the case where the tumour starts at size 9cm³. Explain
in biological terms what happens to the size of each of these tumours at time progresses.
For the system consisting of the two planes:plane 1: -x + y + z = 0plane 2: 3x + y + 3z = 0a) Are the planes parallel and/or coincident? Justify your answer. What does this tell you about the solution to the system?b) Solve the system (if possible). Show a complete solution. If there is a line of intersection express it in parametric form.
Question 2: (10 points) Evaluate the definite integral.
Use the following form of the definition of the integral to evaluate the integral:
Theorem: Iff is integrable on [a, b], then
where Ax = (ba)/n and x₂ = a + i^x.
You might need the following formulas.
IM³
L² (3x²
(3x²+2x-
2x - 1)dx.
n
[f(z)dz lim f(x)Az
a
n→∞
i=1
n(n + 1)
2
n
i=1
n(n+1)(2n+1)
6
Chapter 3 Solutions
Calculus & Its Applications
Ch. 3.1 - Consider the function y=(x+1)x. Differentiate y by...Ch. 3.1 - Prob. 2CYUCh. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28. y=xxCh. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28. y=[...
Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Prob. 18ECh. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28. y=[...Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Differentiate the functions in Exercise 1-28....Ch. 3.1 - Find the equation of the tangent line to the curve...Ch. 3.1 - Find the equation of the tangent line to the curve...Ch. 3.1 - Find all x-coordinates of points (x,y) on the...Ch. 3.1 - Find the inflection points on the graph of...Ch. 3.1 - Find all x such that dydx=0, where...Ch. 3.1 - The graph of y=(x21)4(x2+1)5 is shown in Fig. 3....Ch. 3.1 - Find the point(s) on the graph of y=(x2+3x1)/x...Ch. 3.1 - Find the point(s) on the graph of y=(2x4+1)(x5)...Ch. 3.1 - Find d2ydx2. y=(x2+1)4Ch. 3.1 - Find d2ydx2. y=x2+1Ch. 3.1 - Find d2ydx2 y=xx+1Ch. 3.1 - Find d2ydx2 y=22+x2Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - In Exercises 4144, a function h(x) is defined in...Ch. 3.1 - Volume An open rectangular box is 3 feet long and...Ch. 3.1 - Volume A closed rectangular box is to be...Ch. 3.1 - Prob. 47ECh. 3.1 - Prob. 48ECh. 3.1 - Average Revenue Let R(x) be the revenue received...Ch. 3.1 - Average Velocity Let s(t) be the number of miles a...Ch. 3.1 - Prob. 51ECh. 3.1 - Cost-Benefit of Emission Control A manufacturer...Ch. 3.1 - In Exercises 53 and 54, use the fact that at the...Ch. 3.1 - Prob. 54ECh. 3.1 - Prob. 55ECh. 3.1 - Prob. 56ECh. 3.1 - Prob. 57ECh. 3.1 - Prob. 58ECh. 3.1 - Prob. 59ECh. 3.1 - If f(x) and g(x) are differentiable functions such...Ch. 3.1 - If f(x) and g(x) are differentiable functions such...Ch. 3.1 - Prob. 62ECh. 3.1 - Let f(x)=1/x and g(x)=x3. Show that the product...Ch. 3.1 - Prob. 64ECh. 3.1 - Prob. 65ECh. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prob. 69ECh. 3.2 - Consider the function h(x)=(2x35)5+(2x35)4 Write...Ch. 3.2 - Consider the function h(x)=(2x35)5+(2x35)4 Compute...Ch. 3.2 - Prob. 3CYUCh. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Compute f(g(x)), where f(x) and g(x) are the...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Each of following functions may be viewed as a...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - Differentiate the functions in Exercises 1120...Ch. 3.2 - In Exercises 2126, a function h(x) is defined in...Ch. 3.2 - Prob. 22ECh. 3.2 - Prob. 23ECh. 3.2 - In Exercises 2126, a function h(x) is defined in...Ch. 3.2 - In Exercises 2126, a function h(x) is defined in...Ch. 3.2 - Prob. 26ECh. 3.2 - Sketch the graph of y=4x/(x+1)2,x1.Ch. 3.2 - Sketch the graph of y=2/(1+x2)Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute ddxf(g(x)), where f(x) and g(x) are...Ch. 3.2 - Compute dydx using the chain rule in formula (1)....Ch. 3.2 - Compute dydx using the chain rule in formula (1)....Ch. 3.2 - Compute dydx using the chain rule in formula (1)....Ch. 3.2 - Prob. 40ECh. 3.2 - Compute dydxt=t0 y=x23x,x=t2+3,t0=0Ch. 3.2 - Compute dydxt=t0 y=(x22x+4)2,x=1t+1,t0=1Ch. 3.2 - Compute dydxt=t0 y=x+1x1,x=t24,t0=3Ch. 3.2 - Prob. 44ECh. 3.2 - Find the equation of the line tangent to the graph...Ch. 3.2 - Find the equation of the line tangent to the graph...Ch. 3.2 - Find the x- coordinate of all points on the curve...Ch. 3.2 - The function f(x)=x26x+10 has one relative minimum...Ch. 3.2 - Prob. 49ECh. 3.2 - Allometric Equation Many relations in biology are...Ch. 3.2 - Suppose that P, y and t are variables, where P is...Ch. 3.2 - Suppose that Q, x and y are variables, where Q is...Ch. 3.2 - Marginal Profit and Times Rate of Change When a...Ch. 3.2 - Marginal Cost and Time Rate of Change The cost of...Ch. 3.2 - A model for Carbon Monoxide Levels Ecologists...Ch. 3.2 - Profit A manufacturer of microcomputers estimates...Ch. 3.2 - Prob. 57ECh. 3.2 - Prob. 58ECh. 3.2 - If f(x) and g(x) are differentiable functions,...Ch. 3.2 - Prob. 60ECh. 3.2 - Effect of Stocks on Total Assets of a Company...Ch. 3.2 - Refer to Exercise 61. Use chain rule to find...Ch. 3.2 - Refer to Exercise 61. Find dxdt|t=2.5 and...Ch. 3.2 - Refer to Exercise 61. What was the maximum value...Ch. 3.2 - In an expression of the form f(g(x)), f(x) is...Ch. 3.3 - Solution can be found following the section...Ch. 3.3 - Solution can be found following the section...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - In Exercise 1-18, suppose that x and y are related...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Use implicit differentiation of the equation in...Ch. 3.3 - Find the equation of the tangent line to the graph...Ch. 3.3 - Find the equation of the tangent line to the graph...Ch. 3.3 - Slope of the Lemniscate The graph of...Ch. 3.3 - The graph of x4+2x2y2+y4=9x29y2 is a lemniscate...Ch. 3.3 - Marginal Rate of Substitution Suppose that x and y...Ch. 3.3 - Demand Equation Suppose that x and y represents...Ch. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - Prob. 34ECh. 3.3 - In Exercise 31 36, suppose that x and y are both...Ch. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3.3 - Demand Equation Suppose that the price p (in...Ch. 3.3 - Demand Equation Suppose that the price p (in...Ch. 3.3 - Advertising Affects Revenue The monthly...Ch. 3.3 - Rate of Change of Price Suppose that in Boston the...Ch. 3.3 - Related Rates Figure 7 shows a 10- foot ladder...Ch. 3.3 - Related Rates An airplane flying 390 feet per...Ch. 3.3 - Related Rates A baseball diamond is a 90- foot by...Ch. 3.3 - Related Rates A motorcyclist is driving over a...Ch. 3 - State the product rule and quotient rule.Ch. 3 - Prob. 2FCCECh. 3 - Prob. 3FCCECh. 3 - Prob. 4FCCECh. 3 - Prob. 5FCCECh. 3 - Prob. 6FCCECh. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions. y=x(x51)3Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions. y=xx+4Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions....Ch. 3 - Differentiate the following functions. y=x26xx2Ch. 3 - Differentiate the following functions. y=2x23xCh. 3 - Differentiate the following functions. y=(3x2x3)2Ch. 3 - Differentiate the following functions. y=x3+xx2xCh. 3 - Let f(x)=(3x+1)4(3x)5. Find all x such that...Ch. 3 - Let f(x)=x2+1x2+5. Find all x such that f(x)=0.Ch. 3 - Find the equation of the line tangent to the graph...Ch. 3 - Find the equation of the line tangent to the graph...Ch. 3 - Minimizing Area A botanical display is to be...Ch. 3 - Repeat Exercise 17, with the sidewalk on the...Ch. 3 - Cost function A store estimates that its cost when...Ch. 3 - Rate of Change of Taxes A company pays y dollars...Ch. 3 - In Exercise 21-23, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 21-23, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 21-23, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 24-26, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 24-26, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 24-26, find a formula for ddxf(g(x)),...Ch. 3 - In Exercise 27-29, find dydx, where y is a...Ch. 3 - In Exercise 27-29, find dydx, where y is a...Ch. 3 - In Exercise 27-29, find dydx, where y is a...Ch. 3 - In Exercises 30 32, find dydx, where y is a...Ch. 3 - In Exercises 30 32, find dydx, where y is a...Ch. 3 - In Exercises 30 32, find dydx, where y is a...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Exercises 33 38 refer to the graphs of the...Ch. 3 - Revenue Function The revenue, R, that a company...Ch. 3 - Amount of Drug Usage The amount, A, of anesthetics...Ch. 3 - The graph of x2/3+y2/3=8 is the astroid in Fig. 3...Ch. 3 - Slope of the Folium of Descartes The graph of...Ch. 3 - Slope of the Folium of Descartes The graph of...Ch. 3 - In Exercises 43-46, x and y are related by the...Ch. 3 - In Exercises 43-46, x and y are related by the...Ch. 3 - In Exercises 43-46, x and y are related by the...Ch. 3 - Cost Analysis and Production A factorys weekly...Ch. 3 - Use of Books at a Library A town library estimates...Ch. 3 - Demand equation Suppose that the price p and...Ch. 3 - Volume of an Oil Spill An offshore oil well is...Ch. 3 - Weight and Surface Area Animal physiologists have...Ch. 3 - Sales and Advertising Suppose that a kitchen...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- For the system consisting of the three planes:plane 1: -4x + 4y - 2z = -8plane 2: 2x + 2y + 4z = 20plane 3: -2x - 3y + z = -1a) Are any of the planes parallel and/or coincident? Justify your answer.b) Determine if the normals are coplanar. What does this tell you about the system?c) Solve the system if possible. Show a complete solution (do not use matrix operations). Classify the system using the terms: consistent, inconsistent, dependent and/or independent.arrow_forwardFor the system consisting of the three planes:plane 1: -4x + 4y - 2z = -8plane 2: 2x + 2y + 4z = 20plane 3: -2x - 3y + z = -1a) Are any of the planes parallel and/or coincident? Justify your answer.b) Determine if the normals are coplanar. What does this tell you about the system?c) Solve the system if possible. Show a complete solution (do not use matrix operations). Classify the system using the terms: consistent, inconsistent, dependent and/or independent.arrow_forwardOpen your tool box and find geometric methods, symmetries of even and odd functions and the evaluation theorem. Use these to calculate the following definite integrals. Note that you should not use Riemann sums for this problem. (a) (4 pts) (b) (2 pts) 3 S³ 0 3-x+9-dz x3 + sin(x) x4 + cos(x) dx (c) (4 pts) L 1-|x|dxarrow_forward
- An engineer is designing a pipeline which is supposed to connect two points P and S. The engineer decides to do it in three sections. The first section runs from point P to point Q, and costs $48 per mile to lay, the second section runs from point Q to point R and costs $54 per mile, the third runs from point R to point S and costs $44 per mile. Looking at the diagram below, you see that if you know the lengths marked x and y, then you know the positions of Q and R. Find the values of x and y which minimize the cost of the pipeline. Please show your answers to 4 decimal places. 2 Miles x = 1 Mile R 10 miles miles y = milesarrow_forwardAn open-top rectangular box is being constructed to hold a volume of 150 in³. The base of the box is made from a material costing 7 cents/in². The front of the box must be decorated, and will cost 11 cents/in². The remainder of the sides will cost 3 cents/in². Find the dimensions that will minimize the cost of constructing this box. Please show your answers to at least 4 decimal places. Front width: Depth: in. in. Height: in.arrow_forwardFind and classify the critical points of z = (x² – 8x) (y² – 6y). Local maximums: Local minimums: Saddle points: - For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if there are no points for a classification.arrow_forward
- Suppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10. 1. The critical point of f(x, y, z) is at (a, b, c). Then a = b = C = 2. Absolute minimum of f(x, y, z) is and the absolute maximum isarrow_forwardThe spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning


Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Derivatives of Trigonometric Functions - Product Rule Quotient & Chain Rule - Calculus Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_niP0JaOgHY;License: Standard YouTube License, CC-BY