Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
5th Edition
ISBN: 9781305586871
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 30, Problem 43P

(a)

To determine

The radius of the 612C nucleus.

(a)

Expert Solution
Check Mark

Answer to Problem 43P

The radius of the 612C nucleus is 2.7fm_.

Explanation of Solution

Write the expression for the radius of the 612C nucleus.

    r=aA1/3        (I)

Here, r is the radius of the 612C nucleus, A is the mass number, a is a constant.

Conclusion:

Substitute 1.2fm for a, 12 for A in equation (I) to find r.

    r=(1.2fm×1015m1fm)(12)1/3=2.7×1015m=2.7fm

Therefore, the radius of the 612C nucleus is 2.7fm_.

(b)

To determine

The force of repulsion between a proton at the surface of an 612C nucleus and the remaining five protons.

(b)

Expert Solution
Check Mark

Answer to Problem 43P

The force of repulsion between a proton at the surface of an 612C nucleus and the remaining five protons 1.5×102N_.

Explanation of Solution

Write the expression for the force of repulsion between a proton at the surface of an 612C nucleus and the remaining five protons.

    F=ke(Z1)e(1e)r2=ke(Z1)e2r2        (II)

Here, F is the force of repulsion between a proton at the surface of an 612C nucleus and the remaining five protons, ke is the columbic constant, r is the radius of the nucleus, Z is the number of protons, e is the electronic charge.

Conclusion:

Substitute 8.99×109Nm2/C2 for ke, 6 for Z, 2.7fm for r, 1.60×1019C for e in equation (II) to find F.

    F=(8.99×109Nm2/C2)(61)(1.60×1019C)2(2.7fm×1015m1fm)2=1.5×102N

Therefore, the force of repulsion between a proton at the surface of an 612C nucleus and the remaining five protons 1.5×102N_.

(c)

To determine

The work done to overcome the last proton from a large distance up to the surface of the nucleus.

(c)

Expert Solution
Check Mark

Answer to Problem 43P

The work done to overcome the last proton from a large distance up to the surface of the nucleus is 2.6MeV_.

Explanation of Solution

Write the expression for the work done to overcome the last proton from a large distance up to the surface of the nucleus.

    U=ke(Z1)e(1e)r=ke(Z1)e2r        (III)

Conclusion:

Substitute 8.99×109Nm2/C2 for ke, 6 for Z, 2.7fm for r, 1.60×1019C for e in equation (II) to find U.

    U=(8.99×109Nm2/C2)(61)(1.60×1019C)2(2.7fm×1015m1fm)=4.2×1013JU(in MeV)=(4.2×1013J×1MeV1.60×1013J)=2.6MeV

Therefore, the work done to overcome the last proton from a large distance up to the surface of the nucleus is 2.6MeV_.

(d)

To determine

The radius of 92238U nucleus, the force between a proton at the surface of 92238U and the remaining protons, the work done to overcome the last proton from a large distance up to the surface of the nucleus.

(d)

Expert Solution
Check Mark

Answer to Problem 43P

The radius of 92238U nucleus is 7.4fm_, the force between a proton at the surface of 92238U and the remaining protons is 3.8×102N_, the work done to overcome the last proton from a large distance up to the surface of the nucleus is 18MeV_.

Explanation of Solution

Use equation (I) to solve for the radius of 92238U nucleus.

Use equation (II) to solve for force between a proton at the surface of 92238U and the remaining protons.

Use equation (III) the work done to overcome the last proton from a large distance up to the surface of the nucleus.

Conclusion:

Substitute 1.2fm for a, 238 for A in equation (I) to find r.

    r=(1.2fm×1015m1fm)(238)1/3=7.4×1015m=7.4fm

Substitute 8.99×109Nm2/C2 for ke, 92 for Z, 7.4fm for r, 1.60×1019C for e in equation (II) to find F.

    F=(8.99×109Nm2/C2)(921)(1.60×1019C)2(7.4fm×1015m1fm)2=3.8×102N

Substitute 8.99×109Nm2/C2 for ke, 92 for Z, 7.4fm for r, 1.60×1019C for e in equation (II) to find U.

    U=(8.99×109Nm2/C2)(921)(1.60×1019C)2(7.4fm×1015m1fm)=2.8×1012JU(in MeV)=(2.8×1012J×1MeV1.60×1013J)=18MeV

Therefore, the radius of 92238U nucleus is 7.4fm_, the force between a proton at the surface of an 92238U and the remaining protons is 3.8×102N_, the work done to overcome the last proton from a large distance up to the surface of the nucleus is 18MeV_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s.     Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.
Rocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).
Formant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714

Chapter 30 Solutions

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)

Ch. 30 - Prob. 5OQCh. 30 - Prob. 6OQCh. 30 - Prob. 7OQCh. 30 - Prob. 8OQCh. 30 - Prob. 9OQCh. 30 - Prob. 10OQCh. 30 - Which of the following quantities represents the...Ch. 30 - Prob. 12OQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - If no more people were to be born, the law of...Ch. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - What fraction of a radioactive sample has decayed...Ch. 30 - Prob. 13CQCh. 30 - Prob. 14CQCh. 30 - Prob. 15CQCh. 30 - Prob. 16CQCh. 30 - Prob. 17CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - What time interval elapses while 90.0% of the...Ch. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 41PCh. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Prob. 47PCh. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - Prob. 51PCh. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - Prob. 57PCh. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - Prob. 62PCh. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - Prob. 66PCh. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - Prob. 69PCh. 30 - Prob. 70P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning