
Concept explainers
(a)
The radius of the
(a)

Answer to Problem 43P
The radius of the
Explanation of Solution
Write the expression for the radius of the
Here,
Conclusion:
Substitute
Therefore, the radius of the
(b)
The force of repulsion between a proton at the surface of an
(b)

Answer to Problem 43P
The force of repulsion between a proton at the surface of an
Explanation of Solution
Write the expression for the force of repulsion between a proton at the surface of an
Here,
Conclusion:
Substitute
Therefore, the force of repulsion between a proton at the surface of an
(c)
The work done to overcome the last proton from a large distance up to the surface of the nucleus.
(c)

Answer to Problem 43P
The work done to overcome the last proton from a large distance up to the surface of the nucleus is
Explanation of Solution
Write the expression for the work done to overcome the last proton from a large distance up to the surface of the nucleus.
Conclusion:
Substitute
Therefore, the work done to overcome the last proton from a large distance up to the surface of the nucleus is
(d)
The radius of
(d)

Answer to Problem 43P
The radius of
Explanation of Solution
Use equation (I) to solve for the radius of
Use equation (II) to solve for force between a proton at the surface of
Use equation (III) the work done to overcome the last proton from a large distance up to the surface of the nucleus.
Conclusion:
Substitute
Substitute
Substitute
Therefore, the radius of
Want to see more full solutions like this?
Chapter 30 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- pls help on thesearrow_forward20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forward
- 19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forwardpls help on allarrow_forward
- 6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





