Concept explainers
(a)
The expression for the force on the Earth due to the pressure of the
(a)
Answer to Problem 41P
The force on the Earth is
Explanation of Solution
Given:
The intensity
Formula Used:
The expression for force acting on the Earth can be expressed by,
The expression for the pressure on the Earth is given by,
The expression for the gravitational force of the sun on the Sun on the Earth is given by,
The expression for the ratio of the pressure on the Earth to the gravitational force on the Earth by the sun is given by,
Calculation:
The expression to determine the force on the Earth is calculated as,
The force on the Earth is calculated as,
The gravitational force on the Sun is calculated as,
The ratio for the radiation pressure on the earth to the gravitational force on the Earth by the is calculated as,
Conclusion:
Therefore, the force on the Earth is
(b)
The force on the Mars due to the pressure of the radiation by Sun and compare the force of the Sun on the Earth.
(b)
Answer to Problem 41P
The force on the Mars is
Explanation of Solution
Given:
The distance of the Mars from the Sun is
Formula used:
The expression to determine the value of the
The expression for force acting on the Mars can be expressed by,
The expression for the pressure on the Mars is given by,
The expression for the gravitational force of the sun on the Mars is given by,
The expression for the ratio of the pressure on the Mars to the gravitational force on the Mars by the sun is given by,
Calculation:
The value of the
The expression to determine the force on the Mars is calculated as,
The force on the Mars is calculated as,
The gravitational force on the Sun is calculated as,
The ratio for the radiation pressure on the Mars to the gravitational force on the Mars by the is calculated as,
Conclusion:
Therefore, the force on the Mars is
(c)
The planet that has the larger ratio of the radiation pressure to the gravitational attraction.
(c)
Answer to Problem 41P
The planet Mars has the larger ratio of radiation force to the gravitational force as the mass of Mars is smaller than the mass of the Earth.
Explanation of Solution
Calculation:
The ratio for the radiation pressure on the earth to the gravitational force on the Earth is given by,
The ratio for the radiation pressure on the Mars to the gravitational force on the Mars is given by,
The planet Mars has the larger ratio of radiation force to the gravitational force as the mass of Mars is smaller than the mass of the Earth.
Conclusion:
Therefore, the planet Mars has the larger ratio of radiation force to the gravitational force as the mass of Mars is smaller than the mass of the Earth.
Want to see more full solutions like this?
Chapter 30 Solutions
Physics for Scientists and Engineers
- A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2?arrow_forwardEnergy from the Sun arrives at the top of Earth’s atmosphere with an intensity of 1400 W/m2. How long does it take for 1.80109 J to arrive on an area of 1.00 m2?arrow_forwardRadar is used to determine distances to various objects by measuring the round-trip time for an echo from the object, (a) How far away is the planet Venus if the echo time is 1000 s? (b) What is the echo time for a car 75.0 m from a highway police radar unit? (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 10.0 m?arrow_forward
- A radio station broadcasts its radio waves with a power of 50,000 W. What would be the intensity of this signal if it is received on a planet orbiting Proxima Centuri, the closest star to our Sun, at 4.243 ly away?arrow_forwardEngineering Application (a) A photovoltaic array of (solar cells) is 10.0% ef?cient in gathering solar energy and converting it to electricity. If the average intensity of sunlight on one day is 700W/m2, what area should your array have to gather energy at the rate of 100 W? (b) What is the maximum test of the array if it must pay for itself in two years of operation averaging 10.0 hours per day? Assume that it earns money at the rate of 9.00 (¢ per kilowatthour.arrow_forwardThe intensity of electromagnetic energy from the Sun reaching the Earth is 1,390 W/m?. Earth is about 1.5 x 1011 m from the Sun and Saturn is about 10 times further, how much power would a 1.00 m2 solar panel receive at the distance of Saturn? Provide the solution:arrow_forward
- What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 94.0% absorbed, puts 540 J of energy into a circular spot 2.20 mm in diameter in 4.00 s? Discuss how this intensity compares to the average intensity of sunlight (about 700 W/m2) and the implications it would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure.arrow_forwardOptical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweezers is 1000 W/m², the same as the intensity of sunlight at the surface of the Earth. (a) What is the pressure on an atom if light from the tweezers is totally absorbed? Pa (b) If this pressure were exerted on a helium atom, what would be its acceleration? (The mass of a helium atom is 6.65 x 10-27 kg. Assume the cross-sectional area of the laser beam is 6.65 x 10-29 m².) m/s2arrow_forwardThe average intensity of solar radiation reaching Earth's satellite orbit is 1360 W/m?. A satellite's solar panel with area 37.7 m? directly faces the sun and absorbs the entire solar radiation incident on it. What is the force the solar radiation exerts on the panel (in Newton)? Speed of light in vacuum c = 3.008 m/s Permittivity of vacuum &0 = 8.85B-12 F/m Permeability of vacuum No = 1.26E-6 T•m/Aarrow_forward
- (b) The earth has a radius of R = 6.4 x 106 m. It orbits the sun in a nearly circular orbit at an average distance of r = 1.5x 10¹1 m. The solar intensity at the upper atmosphere is 1367 W/m². How much energy does the sun radiate per second?arrow_forwardThe mean distance between the Earth and the Sun is 1.50×1011 m. The average intensity of solar radiation incident on the upper atmosphere of the Earth is 1390 W/m2. Assuming that the Sun emits radiation uniformly in all directions, determine the total power radiated by the Sun.arrow_forwardThe distant galaxy called Cygnus A is one of the strongestsources of radio waves reaching Earth. The distance of thisgalaxy from Earth is 3 × 1024 m. How long (in years) doesit take a radio wave of wavelength 10 m to reach Earth?What is the frequency of this radio wave?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University