EP PHYSICS F/SCI.+ENGR.W/MOD..-MOD MAST
4th Edition
ISBN: 9780133899634
Author: GIANCOLI
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 37P
To determine
The time required for the energy stored in the fields of the capacitor and inductor fall to
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Answer everything or don't answer at all
Part A:
kg
(a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised
m³
iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and
discharging at point C from the fully opened gate valve B at a volumetric flow rate of
0.003 m³/s. Determine the required pressure at A, considering all the losses that occur
in the system described in Figure Q1. Loss coefficients for pipe fittings have been
provided in Table 1.
[25 marks]
(b) Due to corrosion within the pipe, the average flow velocity at C is observed to be
V2 m/s after 10 years of operation whilst the pressure at A remains the same as
determined in (a). Determine the average annual rate of growth of k within the pipe.
[15 marks]
4₁
Figure Q1. Pipe system
Page 2
25 mm
For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor.
(a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.
Chapter 30 Solutions
EP PHYSICS F/SCI.+ENGR.W/MOD..-MOD MAST
Ch. 30.1 - Prob. 1AECh. 30.1 - Prob. 1BECh. 30.3 - Prob. 1CECh. 30.4 - Show that L/R does have dimensions of lime. (See...Ch. 30.4 - Prob. 1EECh. 30.5 - Return to the Chapter-Opening Question, page 785,...Ch. 30.7 - At what frequency is the reactance of a 1.0-F...Ch. 30.7 - Prob. 1HECh. 30 - Prob. 1QCh. 30 - Prob. 2Q
Ch. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - If you are given a fixed length of wire, how would...Ch. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - What keeps an LC circuit oscillating even after...Ch. 30 - Is the ac current in the indicator always the same...Ch. 30 - Prob. 11QCh. 30 - In an ac LRC circuit, if XL XC, the circuit is...Ch. 30 - Prob. 13QCh. 30 - Under what conditions is the impedance in an LRC...Ch. 30 - Is it possible for the instantaneous power output...Ch. 30 - In an ac LRC circuit, does the power factor, cos,...Ch. 30 - Describe briefly how the frequency of the source...Ch. 30 - Prob. 18QCh. 30 - In an LRC circuit, the current and the voltage in...Ch. 30 - Compare the oscillations or an LRC circuit to the...Ch. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - (I) If the current in a 280-mH coil changes...Ch. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - (II) If the outer conductor of a coaxial cable has...Ch. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - (II) Ignoring any mutual inductance, what is the...Ch. 30 - (I) The magnetic field inside an air-filled...Ch. 30 - (I) Typical large values for electric and magnetic...Ch. 30 - (II) What is the energy density at the center of a...Ch. 30 - (II) Calculate the magnetic and electric energy...Ch. 30 - Prob. 19PCh. 30 - (II) Determine the total energy stored per unit...Ch. 30 - (II) Determine the total energy stored per unit...Ch. 30 - Prob. 22PCh. 30 - (II) How many time constants does it take for the...Ch. 30 - (II) It takes 2.56 ms for the current in an LR...Ch. 30 - Prob. 25PCh. 30 - (II) In the circuit of Fig. 3027, determine the...Ch. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - (II) A 12-V battery has been connected to an LR...Ch. 30 - Prob. 30PCh. 30 - (I) The variable capacitor in the tuner of an AM...Ch. 30 - Prob. 32PCh. 30 - (II) In some experiments, short distances are...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - (I) At what frequency will a 32.0-mH inductor have...Ch. 30 - (I) What is the reactance of a 9.2-F capacitor at...Ch. 30 - (I) Plot a graph of the reactance of a 1.0-F...Ch. 30 - (I) Calculate the reactance of, and rms current...Ch. 30 - (II) A resistor R is in parallel with a capacitor...Ch. 30 - Prob. 44PCh. 30 - (II) (a) What is the reactance of a 0.086-F...Ch. 30 - Prob. 46PCh. 30 - (II) A current I = 1.80 cos 377t (I in amps, t in...Ch. 30 - (I) A 10.0-k resistor is in series with a 26.0-mH...Ch. 30 - (I) A 75- resistor and a 6.8-F capacitor are...Ch. 30 - (I) For a 120-V, 60-Hz voltage, a current of 70 mA...Ch. 30 - (II) A 2.5-k resistor in series with a 420-mH...Ch. 30 - (II) (a) What is the rms current in a series RC...Ch. 30 - (II) An ac voltage source is connected in series...Ch. 30 - (II) Determine the total impedance, phase angle,...Ch. 30 - (II) (a) What is the rms current in a series LR...Ch. 30 - (II) A 35-mH inductor with 2.0- resistance is...Ch. 30 - (II) A 25-mH coil whose resistance is 0.80 is...Ch. 30 - (II) A 75-W lightbulb is designed to operate with...Ch. 30 - (II) In the LRC circuit or Fig. 3019, suppose I =...Ch. 30 - (II) An LRC series circuit with R = 150 , L = 25...Ch. 30 - (II) An LR circuit can be used as a phase shifter....Ch. 30 - (I) A 3800-pF capacitor is connected in series to...Ch. 30 - (I) What is the resonant frequency of the LRC...Ch. 30 - (II) An LRC circuit has L = 4.15 mH and R = 3.80...Ch. 30 - (II) The frequency of the ac voltage source (peak...Ch. 30 - (II) Capacitors made from piezoelectric materials...Ch. 30 - (II) (a) Determine a formula for the average power...Ch. 30 - (II) (a) Show that oscillation of charge Q on the...Ch. 30 - (II) A resonant circuit using a 220-nF capacitor...Ch. 30 - Prob. 70PCh. 30 - Prob. 71GPCh. 30 - Prob. 72GPCh. 30 - At time t = 0, the switch in the circuit shown in...Ch. 30 - Prob. 74GPCh. 30 - Prob. 75GPCh. 30 - Assuming the Earths magnetic field averages about...Ch. 30 - (a) For an underdamped LRC circuit, determine a...Ch. 30 - An electronic device needs to be protected against...Ch. 30 - Prob. 79GPCh. 30 - Prob. 80GPCh. 30 - An ac voltage source V=V0sin(t+90) is connected...Ch. 30 - A circuit contains two elements, but it is not...Ch. 30 - A 3.5-k resistor in series with a 440-mH inductor...Ch. 30 - (a) What is the rms current in on RC circuit if R...Ch. 30 - An inductance coil draws 2.5 A de when connected...Ch. 30 - The Q-value of a resonance circuit can be defined...Ch. 30 - Show that the fraction of electromagnetic energy...Ch. 30 - In a series LRC circuit, the inductance is 33mH,...Ch. 30 - Prob. 89GPCh. 30 - A voltage V = 0.95 sin 754t is applied to an LRC...Ch. 30 - Filler circuit. Figure 3033 shows a simple filler...Ch. 30 - Show that if the inductor L in the filter circuit...Ch. 30 - A resistor R, capacitor C, and inductor L are...Ch. 30 - Suppose a series LRC circuit has two resisiors, R1...Ch. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - You have a small electromagnet that consumes 350 W...Ch. 30 - An inductor L in series with a resistor R, driven...Ch. 30 - In a certain LRC series circuit, when the ac...Ch. 30 - Prob. 100GPCh. 30 - Prob. 101GPCh. 30 - For the circuit shown in Fig. 3038, show that if...Ch. 30 - (II) The RC circuit shown in Fig. 3039 is called a...Ch. 30 - (II) The RC circuit shown in Fig. 3040 is called a...Ch. 30 - (III) Write a computer program or use a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forwardIt is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forward
- Identify the most likely substancearrow_forwardA proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…arrow_forward(1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…arrow_forward
- The figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +yarrow_forwardThree charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward
- (a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 4.95°. What is L (in m)? Assume the cords are massless. 0.180 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 9.60 Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. ncarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nCarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning