![PHYSICS:F/SCI.+ENGRS.,V.1](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337553575/9781337553575_largeCoverImage.gif)
Consider the apparatus shown in Figure P30.32: a
Figure P30.32
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
The emf develop in the system can be given as,
Here,
The current developed in the bar can be given as,
Here,
Substitute
Thus, the expression for current is
Conclusion:
Therefore, the expression for current as a function of
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
The power delivered to the light bulb can be given as,
Here,
As the power is function of both force and speed, in order to maximize the power both force and velocity needs to be maximum. The desired condition can only be achieved if there is loss of energy whatsoever which can only be possible if the particle is in equilibrium.
Thus, the analysis model which describes the moving bar for maximum power is particle under equilibrium.
Conclusion:
Therefore, the analysis model which describes the moving bar for maximum power is particle under equilibrium.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
The magnetic force applied on the bar can be given as,
Substitute
Rearrange the above equation for
Substitute
Thus, the speed of the bar is
Conclusion:
Therefore, the speed of the bar when maximum power is delivered to the light bulb is
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
The current in the light bulb can be given as from equation (1),
Substitute
Thus, the current in light bulb is
Conclusion:
Therefore, the current in light bulb when maximum power is delivered is
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
The power delivered to the light bulb can be given as,
Substitute
Thus, the maximum power delivered to the light bulb is
Conclusion:
Therefore, the maximum power delivered to the light bulb will be
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
The mechanical input power can be given as,
Substitute
Thus, the maximum mechanical input power is
Conclusion:
The maximum mechanical input power delivered to the bar is
(g)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
Consider the expression for speed of the bar from equation (2).
As speed of the bar depends on the resistance, therefore it will change if the resistance increases.
Conclusion:
Therefore, the velocity will change if the resistance increases.
(h)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
Consider the expression for speed of the bar from equation (2),
From the above equation, the speed will be directly proportional to the resistance if all other variables are held constant.
Thus, the speed of the bar will increase if resistance increases.
Conclusion:
Therefore, the speed of the bar will increase if the resistance increases.
(i)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
As far as the mechanical power input is concerned it only depends on the load and the velocity of the object. Since the current in electrical machinery is analogous to mechanical load, an increase in current will lead to change in mechanical load which further changes the mechanical power input.
Thus, the mechanical power input will change.
Conclusion:
Therefore, the effect of increase in resistance and current on the mechanical power input is that it will change.
(j)
![Check Mark](/static/check-mark.png)
Answer to Problem 32AP
Explanation of Solution
Given info: Magnetic field of system is
Both current and resistance can never increase as it violates Ohm’s law which says that current is inversely proportional to resistance.
In order to increase current despite increase in resistance, the load demand will increase to increase the current supply, this further increases the power.
Thus, the mechanical power input will increase if both current and resistance will increase.
Conclusion:
Thus, the mechanical power input will increase if both current and resistance will increase.
Want to see more full solutions like this?
Chapter 30 Solutions
PHYSICS:F/SCI.+ENGRS.,V.1
- Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. Sketch and label a vector diagram illustrating the Galilean transformation of velocities that relates velocity of car P relative to the road, velocity of car Q relative to road, and velocity of car Q relative to car P at instant 3. In the frame of car P, at instant 3 is car Q moving to the west, moving to the east, or at rest? Explain.arrow_forwardJust 5 and 6 don't mind 7arrow_forwardIn an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardYou're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)