Concept explainers
(a)
To draw: The magnetic field pattern in the
(a)
Answer to Problem 30.72CP
The magnetic field pattern in the
Figure (1)
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
The magnetic field pattern in the
Figure (1)
From the right hand thumb rule, when the thumb is directed towards the direction of current, the curled fingers show the direction of magnetic field.
(b)
The value of magnetic field at origin.
(b)
Answer to Problem 30.72CP
The value of magnetic field at origin is
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
The direction of magnetic field due to current carry wire is shown below.
Figure (2)
Write the expression for the magnetic field due to current carrying wire.
Here,
From the given figure,
Substitute
The magnetic field component
The resultant magnetic field along
Substitute
From the figure (2),
Substitute
Conclusion:
Therefore, the value of magnetic field at origin is
(c)
The value of magnetic field at
(c)
Answer to Problem 30.72CP
The value of magnetic field at
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the equation (3), the expression for magnetic field is,
The value of magnetic field at
Conclusion:
Therefore, the value of magnetic field at
(d)
The magnetic field at points along the
(d)
Answer to Problem 30.72CP
The magnetic field at points along the
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
Conclusion:
Therefore, the magnetic field at points along the
(e)
The distance along the positive
(e)
Answer to Problem 30.72CP
The magnetic field is maximum at
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
For maximum value of
Substitute
Substitute
Conclusion:
Therefore, the magnetic field is maximum at
(f)
The maximum value of magnetic field.
(f)
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
Substitute
Substitute
Simplify further,
Conclusion:
Therefore, the maximum value of magnetic field is
Want to see more full solutions like this?
Chapter 30 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardNo chatgpt pls will upvotearrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forward
- Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forwardwould 0.215 be the answer for part b?arrow_forwardSuppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forward
- What functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forwardWhat does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forward
- What is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning