
Concept explainers
(a)
To draw: The magnetic field pattern in the
(a)

Answer to Problem 30.72CP
The magnetic field pattern in the
Figure (1)
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
The magnetic field pattern in the
Figure (1)
From the right hand thumb rule, when the thumb is directed towards the direction of current, the curled fingers show the direction of magnetic field.
(b)
The value of magnetic field at origin.
(b)

Answer to Problem 30.72CP
The value of magnetic field at origin is
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
The direction of magnetic field due to current carry wire is shown below.
Figure (2)
Write the expression for the magnetic field due to current carrying wire.
Here,
From the given figure,
Substitute
The magnetic field component
The resultant magnetic field along
Substitute
From the figure (2),
Substitute
Conclusion:
Therefore, the value of magnetic field at origin is
(c)
The value of magnetic field at
(c)

Answer to Problem 30.72CP
The value of magnetic field at
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the equation (3), the expression for magnetic field is,
The value of magnetic field at
Conclusion:
Therefore, the value of magnetic field at
(d)
The magnetic field at points along the
(d)

Answer to Problem 30.72CP
The magnetic field at points along the
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
Conclusion:
Therefore, the magnetic field at points along the
(e)
The distance along the positive
(e)

Answer to Problem 30.72CP
The magnetic field is maximum at
Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
For maximum value of
Substitute
Substitute
Conclusion:
Therefore, the magnetic field is maximum at
(f)
The maximum value of magnetic field.
(f)

Explanation of Solution
Given info: The amount of current flow in infinitely long wire is
From the calculated value in part (b), the magnetic field at points along the
Substitute
Substitute
Simplify further,
Conclusion:
Therefore, the maximum value of magnetic field is
Want to see more full solutions like this?
Chapter 30 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- pls help on thesearrow_forward20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forward
- 19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forwardpls help on allarrow_forward
- 6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





