EP PHYSICS -MOD.MASTERING (18W)
5th Edition
ISBN: 9780136782490
Author: Walker
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 28PCE
To determine
The work function of copper surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When an ultraviolet photon is absorbed by a molecule of DNA, the photon’s energy can be converted into vibrational energy of the molecular bonds. Excessive vibration damages the molecule by causing the bonds to break. Ultraviolet light of wavelength less than 290 nm causes significant damage to DNA; ultraviolet light of longer wavelength causes minimal damage. What is the threshold photon energy, in eV, for DNA damage?
A spectral emission line is electromagnetic radiation that is emitted in a wavelength range narrow enough to be taken as a sin-gle wavelength. One such emission line that is important in astronomy has a wavelength of 21 cm.What is the photon energy in the electromagnetic wave at that wavelength?
Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.
For the electron with a de broglie wavelength of 3.5 nm, what is the kinetic energy (in eV)?
Chapter 30 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Ch. 30.1 - Prob. 1EYUCh. 30.2 - Prob. 2EYUCh. 30.3 - Prob. 3EYUCh. 30.4 - Prob. 4EYUCh. 30.5 - Prob. 5EYUCh. 30.6 - Prob. 6EYUCh. 30.7 - Prob. 7EYUCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQ
Ch. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 1PCECh. 30 - Prob. 2PCECh. 30 - Prob. 3PCECh. 30 - The Sun has a surface temperature of about 5800 K....Ch. 30 - Prob. 5PCECh. 30 - Prob. 6PCECh. 30 - (a) By what factor does the peak frequency change...Ch. 30 - Prob. 8PCECh. 30 - Prob. 9PCECh. 30 - Prob. 10PCECh. 30 - Prob. 11PCECh. 30 - Prob. 12PCECh. 30 - Prob. 13PCECh. 30 - Prob. 14PCECh. 30 - Prob. 15PCECh. 30 - Prob. 16PCECh. 30 - Prob. 17PCECh. 30 - Prob. 18PCECh. 30 - Prob. 19PCECh. 30 - Prob. 20PCECh. 30 - Prob. 21PCECh. 30 - Prob. 22PCECh. 30 - Prob. 23PCECh. 30 - Prob. 24PCECh. 30 - Prob. 25PCECh. 30 - Prob. 26PCECh. 30 - Prob. 27PCECh. 30 - Prob. 28PCECh. 30 - Prob. 29PCECh. 30 - Prob. 30PCECh. 30 - Prob. 31PCECh. 30 - Prob. 32PCECh. 30 - Prob. 33PCECh. 30 - Prob. 34PCECh. 30 - Prob. 35PCECh. 30 - BIO Owl Vision Owls have large, sensitive eyes for...Ch. 30 - Prob. 37PCECh. 30 - Prob. 38PCECh. 30 - Prob. 39PCECh. 30 - Prob. 40PCECh. 30 - Prob. 41PCECh. 30 - Prob. 42PCECh. 30 - Prob. 43PCECh. 30 - Prob. 44PCECh. 30 - Prob. 45PCECh. 30 - Prob. 46PCECh. 30 - Prob. 47PCECh. 30 - Prob. 48PCECh. 30 - Prob. 49PCECh. 30 - Prob. 50PCECh. 30 - Prob. 51PCECh. 30 - Prob. 52PCECh. 30 - Prob. 53PCECh. 30 - Prob. 54PCECh. 30 - Prob. 55PCECh. 30 - Prob. 56PCECh. 30 - Prob. 57PCECh. 30 - Prob. 58PCECh. 30 - Prob. 59PCECh. 30 - Prob. 60PCECh. 30 - Prob. 61PCECh. 30 - Prob. 62PCECh. 30 - Prob. 63PCECh. 30 - Prob. 64PCECh. 30 - Prob. 65PCECh. 30 - Prob. 66PCECh. 30 - Prob. 67PCECh. 30 - Prob. 68PCECh. 30 - Prob. 69PCECh. 30 - Prob. 70PCECh. 30 - Prob. 71PCECh. 30 - Prob. 72PCECh. 30 - Prob. 73PCECh. 30 - Prob. 74PCECh. 30 - Prob. 75PCECh. 30 - Prob. 76PCECh. 30 - Prob. 77PCECh. 30 - Prob. 78PCECh. 30 - Prob. 79PCECh. 30 - Prob. 80GPCh. 30 - Prob. 81GPCh. 30 - Prob. 82GPCh. 30 - Prob. 83GPCh. 30 - Prob. 84GPCh. 30 - Prob. 85GPCh. 30 - Prob. 86GPCh. 30 - Prob. 87GPCh. 30 - Prob. 88GPCh. 30 - Prob. 89GPCh. 30 - Prob. 90GPCh. 30 - Prob. 91GPCh. 30 - Prob. 92GPCh. 30 - Prob. 93GPCh. 30 - Prob. 94GPCh. 30 - Prob. 95GPCh. 30 - Prob. 96GPCh. 30 - Prob. 97PPCh. 30 - Prob. 98PPCh. 30 - Prob. 99PPCh. 30 - Prob. 100PPCh. 30 - Prob. 101PPCh. 30 - Prob. 102PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.a. For light of wavelength 5.0 nm, what is the energy (in eV) of a single photon? In what part of the electromagnetic spectrum is this?b. For an electron with a de Broglie wavelength of 5.0 nm, what is the kinetic energy (in eV)?arrow_forwarde. X-rays having a wavelength of 0.100 nanometer are scattered off initially stationary electrons, at an angle of 40.0⁰. (i) Calculate the wavelength of the scattered electromagnetic radiation (ii) What is the percent change in the wavelength of the X-rays due to scattering at this angle?arrow_forwardA 633 nm helium-neon laser puts out 4.00 W of power with a beam 5.70 mm in diameter. The beam is pointed directly at a pinhole which has a diameter of 1.80 mm. How many photons of light will travel through the pinhole per second? Assume that the intensity of the light is equally distributed across the whole area of the beam. number of photons per second: photons/sarrow_forward
- Light with a frequency of 3.17 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 5.7 eV. What is the work function of the metal?arrow_forwardA 100 W sodium lamp (l = 589 nm) radiates energy uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon/cm2 s? (c) What is the photon flux (photons per unit area per unit time) on a small screen 2.00 m from the lamp?arrow_forwardTo investigate the structure of extremely small objects, such as viruses, the wavelength of the probing wave should be about one-tenth the size of the object for sharp images. But as the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. One alternative is to use electron matter waves instead of light. Viruses vary considerably in size, but 50 nm is not unusual. Suppose you want to study such a virus, using a wave of wavelength 5.00 nm. (a) If you use light of this wavelength, what would be the energy (in eV) of a single photon? (b) If you use an electron of this wavelength, what would be its kinetic energy (in eV)? Is it now clear why matter waves (such as in the electron microscope) are often preferable to electromagnetic waves for studying microscopic objects?arrow_forward
- A dental X-ray typically affects 215 g of tissue and delivers about 3.95 µJ of energy using X-rays that have wavelengths of 0.0235 nm. What is the energy in electron volts of a single photon of these X-rays? energy of a photon: eV How many photons are absorbed during the dental X-ray? number of photons absorbed: photonsarrow_forwardWhat is the energy (in eV) of the following photons? A 450-nm photon of blue light?arrow_forwardA typical Blu-Ray player uses a gallium nitride (GaN) diode laser with a wavelength of 405.0 nm. What is the energy (in J) of one Blu-Ray photon?arrow_forward
- True FalseThe sun's radiation is most intense in the visible region. True False Radio waves travel in vacuum at a lower speed than the visible light. True False X-rays can be produced in transitions involving inner electrons in an atom. True False A vertical automobile antenna is sensitive to electric fields polarized vertically. True False Visible light is often emitted when valence electrons change their state. True False Gamma rays can be produced in transitions of an atomic nucleus from one state to another. True False The Earth's atmosphere is quite transparent to infrared radiation.arrow_forwardWhat is the wavelength, in nm, of a photon with energy (a) 0.30 eV, (b) 3.0 eV, and (c) 30 eV? For each, is this wavelength visible light, ultraviolet, or infrared?arrow_forwardA metal surface is illuminated by light with a wavelength of 350 nm. The maximum kinetic energy of the emitted electrons is found to be 1.50 eV. What is the maximum electron kinetic energy if the same metal is illuminated by light with a wavelength of 250 nm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning