To explain: The reason for the statement that proton decay is restricted inside the nuclei only, not in its free state.
Answer to Problem 1RQ
Solution:
The rest energy of protons is less than the rest energy of neutrons, therefore, proton decay takes place in nuclei only because the nucleus will provide additional energy to overcome this energy barrier.
Explanation of Solution
Introduction:
Beta decay is referred to as the transformation of protons into neutrons and vice-versa. This decay is further categorized into two different types depending upon the formation of these sub-particles.
Beta plus decay: In this decay, a proton is transformed into a neutron along with the formation of a positron and a neutrino.
Beta minus decay: In this decay, a neutron is transformed into a proton along with the formation of an electron and an antineutrino.
Explanation:
A light mass particle cannot convert into a heavy mass particle in a free state, and the mass and energy of a neutron is greater than that of a proton. Therefore, the transformation is not achieved in free state of a proton. This additional mass and energy are either provided by a gamma-ray photon or by the energy of the nucleus.
Since the beta transition takes place in between the isobars (atoms that have the same
The reaction is as follows:
Since the proton itself is not able to decay into another sub-particle that has a greater mass and higher energy, therefore, the binding energy of the electrons that are associated with isobaric atoms supplies the extra energy that is required for the decay process.
Conclusion:
The additional rest energy of neutron is provided by the nucleus during the beta plus decay, therefore, this decay always takes place in nuclei.
Want to see more full solutions like this?
Chapter 30 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College