![FUNDAMENTALS OF PHYSICS,AP ED.](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781119472780/9781119472780_smallCoverImage.gif)
Concept explainers
If the circular conductor in Fig. 30-21 undergoes thermal expansion while it is in a uniform magnetic field, a current is induced clockwise around it. Is the magnetic field directed into or out of the page?
Figure 30-21 Question 1.
![Check Mark](/static/check-mark.png)
To find:
The direction of the magnetic field.
Answer to Problem 1Q
Solution:
The direction of the magnetic field is out of the page.
Explanation of Solution
1) Concept:
When the magnetic flux through an area bounded by the conducting loop changes, it induces the current in the loop. The induced current produces its own magnetic field. The direction of this current and the field is decided using Lenz’s law.
2) Formula:
3) Given:
i) The circular conductor undergoes thermal expansion.
ii) The conductor is placed in a uniform magnetic field.
iii) The induced current is in the clockwise direction.
4) Calculations:
The thermal expansion changes the area of the conductor. This changes the flux through the conductor as it is placed in a uniform magnetic field. The change in magnetic flux induces the clockwise current in the conductor. This current produces another magnetic field. The direction of this induced magnetic field is decided by the right hand rule. According to the rule, the direction of the induced magnetic field will be into the page.
According to the Lenz’s law, the direction of this induced magnetic field is such that it opposes the flux change. i.e. the direction of the original field.
Hence, the direction of the original field is out of the page.
Conclusion:
The changing magnetic flux induces current in the conductor. The right hand rule decides the direction of the induced magnetic field. Lenz’s law helps us determine the direction of the original magnetic field since the induced magnetic field opposes the original magnetic field.
Want to see more full solutions like this?
Chapter 30 Solutions
FUNDAMENTALS OF PHYSICS,AP ED.
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Organic Chemistry
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Campbell Biology (11th Edition)
- The faster a molecule is moving in the upper atmosphere, the more likely it is to escape Earth's gravity. Given this fact, and your knowledge of rms speed, which of the following molecules can escape most easily from Earth's atmosphere if they are all at the same temperature?arrow_forwardThe temperature in one part of a flame is 2,100 K. What is the rms velocity of the carbon dioxide molecules at this temperature? Give your answer as the number of meters per second. mass of 1 mole of CO2 = 44.0 grams 1 mole contains 6.02 x 1023 molecules the Boltzmann constant k = 1.38 x 10-23 J/Karrow_forwardThe specific heat of a certain substance is 375 J/(kg°C). How much heat energy would you have to add to increase the temperature of 22 kg of this substance from 33°C up to 44°C in a number of Joules?arrow_forward
- 3.9 moles of an ideal gas are sealed in a container with volume 0.22 m3, at a pressure of 146,000 N/m2. What is the temperature of the gas in degrees Celsius?arrow_forwardwhen a cannon is launched at a 65 degree angle, will it have the same horizontal velocity as when it is launched from a 25 degree angle as long as the initial speed is the same?arrow_forwardPlease solve the problem step by step and provide explanations along each step stating what's being done. Thank you!!arrow_forward
- Figure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, 0, y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forwardDraw a phase portrait for an oscillating, damped spring.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)