EBK COLLEGE PHYSICS, VOLUME 2
EBK COLLEGE PHYSICS, VOLUME 2
11th Edition
ISBN: 9781337514644
Author: Vuille
Publisher: CENGAGE LEARNING - CONSIGNMENT
bartleby

Concept explainers

Question
Book Icon
Chapter 30, Problem 12P

(a)

To determine

The amount of uranium dissolved in the ocean.

(a)

Expert Solution
Check Mark

Answer to Problem 12P

The amount of uranium dissolved in the ocean is 4×015g .

Explanation of Solution

Given Info:

The density is 3×103g/m3 .

The deapth is 4×103m .

The radius is 6.38×106m .

Formula to calculate the amount of uranium dissolved in the ocean is,

mU=cVc(23A)hav=c(23(4πRE2))hav=8chavπRE23

  • mU is the amount of uranium dissolved
  • c is the density
  • V is the volume
  • A is the area
  • hav is the depth
  • RE is the radius of Earth

Substitute 3×103g/m3 for c , 4×103m for hav and 6.38×106m for  RE to find mU .

mU=8(3×103g/m3)(4×103m)(3.14rad)(6.38×106m)23=4×1015g

Thus, the amount of uranium dissolved in the ocean is 4×015g .

Conclusion:

The amount of uranium dissolved in the ocean is 4×015g .

(b)

To determine

The time the uranium lasts.

(b)

Expert Solution
Check Mark

Answer to Problem 12P

The time the uranium lasts is 5×103year .

Explanation of Solution

Given Info:

The Avogadro number is 6.02×1023atoms/mol .

The percentage of isotope present is 0.70%

The energy per event 200MeV/atoms

The rate of energy consumption is 1.5×1013J/s

The mass per mol is 235g/mol

Formula to calculate the amount of uranium isotope is,

m235U=ΔpmU

  • m235U is the mass of isotope
  • Δp is the percentage of isotope

Formula to calculate the number of atoms is,

N=NAMmolm235U=NAMmolΔpmU

  • NA is the Avogadro number
  • Mmol is the mass per mol
  • N is the number of atoms

Formula to calculate the energy released is,

E=NE0=NAMmolΔpmUE0

  • E is the energy released
  • E0 is the energy released per atom

Formula to calculate the time is,

t=EP=NAMmolΔpmUE0P=NAPMmolΔpmUE0

  • t is the energy released
  • P is the energy released per atom

Substitute 6.02×1023atoms/mol for NA , 0.70% for Δp , 200MeV/atoms for E , 1.5×1013J/s for P , 4×1015g for mU and 235g/mol for  Mmol to find t .

t=(6.02×1023atoms/mol)(1.5×1013J/s)(235g/mol)(0.70%)(4×1015g)(200MeV/atoms)=5×103year

Thus, the time the uranium lasts is 5×103year .

Conclusion:

The time the uranium lasts is 5×103year .

(c)

To determine

The source of uranium and the possibility of renewal of the energy source.

(c)

Expert Solution
Check Mark

Explanation of Solution

The uranium comes from natural resources as rocks and minerals.

The uranium comes from dissolving rock and minerals. Rivers carry such solutes into the oceans, however, the Earth’s supply of uranium is not renewable. However, if breeder reactors are used, the current ocean supply can last about a half- million years.

Conclusion:

The sources of uranium are natural sources as rocks and minerals which are not renewable.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched. m/s Vm1 Vm2 m/s mi m2 k i
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m. Truck body Dyo Axle (a) What is the compression of the leaf spring for a load of 4.90 × 105 N? m (b) How much work is done compressing the springs? ]
A skier of mass 75 kg is pulled up a slope by a motor-driven cable. (a) How much work is required to pull him 50 m up a 30° slope (assumed frictionless) at a constant speed of 2.8 m/s? KJ (b) What power (expressed in hp) must a motor have to perform this task? hp
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
  • Text book image
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College