College Physics
College Physics
5th Edition
ISBN: 9781260486841
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 88P

(a)

To determine

The direction dolphin must head.

(a)

Expert Solution
Check Mark

Answer to Problem 88P

The dolphin must head 30.0°_ north of west.

Explanation of Solution

Consider the positive x direction to be west, and positive y direction to be north.

Figure 1 represents the relative motion of the dolphin with respect to the bay and uniform water current.

College Physics, Chapter 3, Problem 88P

Write the expression for velocity of dolphin with respect to bay.

    vdb=vdw+vwb        (I)

Here, vdb is the velocity of dolphin with respect to bay, vdw is the velocity of dolphin with respect to the water current, and vwb is the velocity of the water current with respect to the bay.

Write the expression for component of velocity of the dolphin with respect to bay in the x direction.

    vdbx=vdwx+vwbx

Here, vdbx is the velocity of the dolphin with respect to bay in the x direction, vdwx is the velocity of the dolphin with respect to the water current in the x direction, and vwbx is the velocity of the water current with respect to bay in the y direction.

From Figure 1 the above equation is written as

    vdbx=vdwcosθvwbcos45°=vdwcosθvwb2        (II)

Write the expression for component of velocity of the dolphin with respect to bay in the y direction.

    vdby=vdwy+vwby

Here, vdby is the velocity of the dolphin with respect to bay in the y direction, vdwy is the velocity of the dolphin with respect to the water current in the y direction, and vwby is the velocity of the water current with respect to bay in the y direction

From Figure 1 the above equation can be written as

    vdby=vdwsinθvwbsin45°=vdwsinθvwb2        (III)

Since vdby=0, the above is reduced to

    0=vdwsinθvwb2sinθ=vwbvdw2θ=sin1(vwbvdw2)        (IV)

Conclusion:

Substitute 2.83m/s for vwb, and 4.00m/s for vdw in equation (IV), to find θ.

    θ=sin1(2.83m/s(4.00m/s)2)=30.0°

The dolphin should head 30.0° north of west.

Therefore, the dolphin must head 30.0°_ north of west.

(b)

To determine

The time taken by the dolphin to swim 0.80km distant home.

(b)

Expert Solution
Check Mark

Answer to Problem 88P

The time taken by the dolphin to swim 0.80km distant home is 5.47×104s_.

Explanation of Solution

Write the expression for time taken by the dolphin to swim 0.80km distant home.

    Δt=Δxvdbx        (V)

Here, Δt is the time taken by the dolphin to swim 0.80km distant home, Δx is the distance travelled by the dolphin, and vdbx is the component of velocity of the dolphin with respect to bay in the x direction.

From subpart (a), vdbx is derived as vdwcosθvwb2.

Use the above condition in equation (V).

    Δt=Δxvdwcosθvwb2        (VI)

Conclusion:

Substitute 4.00m/s for vdw, 2.83m/s for vwb 0.80km for Δx, and 30.0° for θ in equation (VI), to find Δt.

    Δt=0.80km×1m103km(4.00m/s)cos30.0°2.83m/s2=0.80×103m3.46m/s2.00m/s=5.47×104s

Therefore, the time taken by the dolphin to swim 0.80km distant home is 5.47×104s_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…
(1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…
The figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +y

Chapter 3 Solutions

College Physics

Ch. 3.3 - Prob. 3.6PPCh. 3.3 - Prob. 3.3BCPCh. 3.3 - Prob. 3.7PPCh. 3.3 - Prob. 3.3CCPCh. 3.4 - The wheels fall off Beatrice’s suitcase, so she...Ch. 3.4 - Prob. 3.9PPCh. 3.4 - Prob. 3.10PPCh. 3.4 - Prob. 3.11PPCh. 3.5 - Prob. 3.5CPCh. 3.5 - Prob. 3.12PPCh. 3.5 - Prob. 3.13PPCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Tell whether each of the following objects has a...Ch. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 21CQCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - Prob. 3MCQCh. 3 - Prob. 4MCQCh. 3 - Prob. 5MCQCh. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Prob. 8MCQCh. 3 - Multiple-Choice Questions 7–16. A jogger is...Ch. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - Prob. 12MCQCh. 3 - Prob. 14MCQCh. 3 - Prob. 15MCQCh. 3 - Prob. 16MCQCh. 3 - Prob. 17MCQCh. 3 - Prob. 18MCQCh. 3 - Prob. 19MCQCh. 3 - Prob. 20MCQCh. 3 - Prob. 21MCQCh. 3 - Prob. 22MCQCh. 3 - Prob. 23MCQCh. 3 - Prob. 24MCQCh. 3 - Prob. 25MCQCh. 3 - Prob. 26MCQCh. 3 - Prob. 27MCQCh. 3 - Prob. 28MCQCh. 3 - Prob. 29MCQCh. 3 - Prob. 30MCQCh. 3 - Prob. 31MCQCh. 3 - Prob. 32MCQCh. 3 - Prob. 33MCQCh. 3 - Prob. 34MCQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - You will be hiking to a lake with some of your...Ch. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - An elevator starts at rest on the ninth floor. At...Ch. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116PCh. 3 - Prob. 117PCh. 3 - Prob. 118PCh. 3 - Prob. 119PCh. 3 - Prob. 120PCh. 3 - Prob. 121PCh. 3 - Prob. 122PCh. 3 - Prob. 123PCh. 3 - Prob. 124PCh. 3 - Prob. 126P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY