PHYSICS
PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 83P

(a)

To determine

The time taken for the stone to reach the base of the gorge.

(a)

Expert Solution
Check Mark

Answer to Problem 83P

The time taken for the stone to reach the base of the gorge is 3.49s .

Explanation of Solution

Write the equation for the time taken for the stone to reach the base of the gorge.

    t=2sg        (I)

Here, t is the time taken for the stone to reach the base of the gorge, s is the height of the gorge and g is the acceleration due to gravity.

Conclusion:

Substitute 60.0m for s and 9.83m/s2 for g in equation (I) to find t.

    t=2(60.0m)9.83m/s2=120.0m9.83m/s2=3.49s

Thus, the time taken for the stone to reach the base of the gorge is 3.49s .

(b)

To determine

The time taken for the stone to reach the ground if it is thrown straight down.

(b)

Expert Solution
Check Mark

Answer to Problem 83P

The time taken for the stone to reach the ground if it is thrown straight down is 2.01s.

Explanation of Solution

Write the equation for the vertical distance.

    y=ut+12gt2        (II)

Here, t is the time taken for the stone to reach the ground, y is the vertical distance, u is the initial velocity and g is the acceleration due to gravity.

Rearrange equation (II),

    12gt2+uty=0        (III)

Conclusion:

Substitute 20.0m/s for u, 60.0m for y and 9.83m/s2 for g in equation (I) to obtain a quadratic equation.

    12(9.83m/s2)t2+(20.0m/s)t60.0m=0

The value of t can be found by solving the above quadratic equation.

  t=b±b24ac2a

Substitute 20.0m/s for b, 1/2 for a, and 60.0m for c and solve.

    t=(20.0m/s)±(20.0m/s)24(12)(9.83m/s2)(60.0m)2(12)(9.83m/s2)=2.01s or6.08s

As the time must be positive, the time taken for the stone to reach the ground if it is thrown straight down is 2.01s.

(c)

To determine

The distance below the bridge the stone will hit the ground.

(c)

Expert Solution
Check Mark

Answer to Problem 83P

The distance below the bridge the stone will hit the ground is 80.6m.

Explanation of Solution

Figure 1 shows the components of velocities.

PHYSICS, Chapter 3, Problem 83P

Figure 1

Write the equation for the vertical distance.

    y=(usinθ)t+12gt2        (III)

Here, t is the time taken for the stone to reach the ground, y is the vertical distance, u is the initial velocity, θ is the projection angle and g is the acceleration due to gravity.

Solve equation (III) ,

  12gt2+(usinθ)ty=0        (IV)

Write the equation for the horizontal distance.

    x=(ucosθ)t        (V)

Conclusion:

Substitute 20.0m/s for u, 60.0m for y, 30.0° for θ and 9.83m/s2 for g in equation (I) to obtain a quadratic equation.

    12(9.83m/s2)t2(20.0m/s)sin30.0°t60.0m=0

Find the value of t by solving the quadratic equation.

  t=b±b24ac2a

Substitute (20.0m/s)sin30.0 for b, 12(9.83m/s2) for a, and 60.0m for c and solve.

    t=b±b24ac2a=(20.0m/s)sin30.0°±(20.0m/s)2sin230.0°4(12)(9.83m/s2)(60.0m)2(12)(9.83m/s2)=4.66s or2.62s

As the time must be positive, the time taken is 4.66s.

Substitute 20.0m/s for u, 30.0s for θ and 4.66s for t in equation (V) to find x.

    x=(20.0m/s)cos30.0°(4.66s)=80.6m

Therefore, the distance below the bridge the stone will hit the ground is 80.6m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1 . Solve the equation 2/7=y/3 for y.  2. Solve the equation x/9=2/6 for x.  3. Solve the equation z + 4 = 10    This is algebra and the equation is fraction.
two satellites are in circular orbits around the Earth. Satellite A is at an altitude equal to the Earth's radius, while satellite B is at an altitude equal to twice the Earth's radius. What is the ratio of their periods, Tb/Ta
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.

Chapter 3 Solutions

PHYSICS

Ch. 3.5 - Prob. 3.6PPCh. 3.5 - Prob. 3.5ACPCh. 3.5 - Prob. 3.7PPCh. 3.5 - Prob. 3.5BCPCh. 3.6 - Prob. 3.6CPCh. 3.6 - Prob. 3.8PPCh. 3.6 - Prob. 3.9PPCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - 4. A runner moves along a circular track at a...Ch. 3 - Prob. 4MCQCh. 3 - Prob. 5MCQCh. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Prob. 8MCQCh. 3 - Prob. 9MCQCh. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - Prob. 12MCQCh. 3 - Prob. 13MCQCh. 3 - Prob. 14MCQCh. 3 - Prob. 15MCQCh. 3 - Prob. 16MCQCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - 12. Michaela is planning a trip in Ireland from...Ch. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - 75. A Nile cruise ship takes 20.8 h to go upstream...Ch. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 96PCh. 3 - Prob. 95PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - 111. A ball is thrown horizontally off the edge of...Ch. 3 - 112. A marble is rolled so that it is projected...Ch. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY