ORGANIC CHEMISTRY 3E WPNGC LL SET 1S 
ORGANIC CHEMISTRY 3E WPNGC LL SET 1S 
3rd Edition
ISBN: 9781119815792
Author: Klein
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 73CP
Interpretation Introduction

Interpretation:

The most acidic compound from the given two compounds has to be determined.

Concept Introduction:

Using pKavalues to compare Acidity: In general, acid-base reaction said to reach equilibrium; the position of equilibrium is described by the term Keq. When an acid-base reaction is carried out in aqueous solution, the new term arrives by the term Ka.

pKa=-logKa

pKa Values are used as measure of acidity; a strong acid will have a low pKa and a weak acid will have a high pKa.

Using pKavalues to compare Basicity:  pKa Values are also used to compare bases; by drawing the conjugate acid of each base and compare the pKa values and identify the stronger base.

Bronsted-Lowry Acidity: Qualitative analysis; without using pKa values, the acids are compared by their structures.

Conjugate base stability: As the acid deprotonates, the stability of conjugate base formed is analyzed on the basis of electronegativity, size of the atom, inductive effect and orbitals.

Factors affecting the stability of Negative charges:

  • Compare the atoms bearing the negative charge. If the negative charge is on high electronegative atom, more the conjugate base is stabilized and the compound readily donates proton.
  • Compare the atoms in the same column. If the negative charge is in the same column of periodic table, no more electronegativity will be the dominant effect. Instead dominant effect is SIZE. Larger the size of the atom, better stabilize a negative charge by that atom.\
  • Resonance: Resonance effect (delocalization of electrons over the alternative double bond system) that makes the conjugate base more stable than rest.

Curved arrows: Curved arrows are used to show the direction of electrons movement. It has a tail (the source of electrons, usually lone pair or bonding pair from a sigma or pi-bond) and head (the destination of electrons, usually forming new lone pair on atom or a new bond). Electrons always flow from high electron density to low electron density.

Blurred answer
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10

Chapter 3 Solutions

ORGANIC CHEMISTRY 3E WPNGC LL SET 1S 

Ch. 3.3 - Prob. 8ATSCh. 3.3 - Prob. 9ATSCh. 3.3 - Prob. 4LTSCh. 3.3 - Prob. 10PTSCh. 3.3 - Prob. 11ATSCh. 3.3 - Prob. 12CCCh. 3.4 - Prob. 5LTSCh. 3.4 - Prob. 13PTSCh. 3.4 - Prob. 14ATSCh. 3.4 - Prob. 6LTSCh. 3.4 - Prob. 15PTSCh. 3.4 - Prob. 16ATSCh. 3.4 - Prob. 17ATSCh. 3.4 - Prob. 7LTSCh. 3.4 - Prob. 18PTSCh. 3.4 - Prob. 19PTSCh. 3.4 - Prob. 20ATSCh. 3.4 - Prob. 8LTSCh. 3.4 - Prob. 21PTSCh. 3.4 - Prob. 22ATSCh. 3.4 - Prob. 9LTSCh. 3.4 - Prob. 23PTSCh. 3.4 - Prob. 24PTSCh. 3.4 - Prob. 25ATSCh. 3.4 - Prob. 26ATSCh. 3.5 - Prob. 10LTSCh. 3.5 - Prob. 27PTSCh. 3.5 - The development of chemical sensors that can...Ch. 3.5 - Determine whether H2O would be a suitable reagent...Ch. 3.5 - Prob. 29PTSCh. 3.5 - Prob. 30ATSCh. 3.7 - Prob. 31CCCh. 3.9 - Prob. 12LTSCh. 3.9 - Prob. 32PTSCh. 3.9 - Prob. 33ATSCh. 3 - Prob. 34PPCh. 3 - Prob. 35PPCh. 3 - Prob. 36PPCh. 3 - Prob. 37PPCh. 3 - Prob. 38PPCh. 3 - Prob. 39PPCh. 3 - Prob. 40PPCh. 3 - Prob. 41PPCh. 3 - Prob. 42PPCh. 3 - Prob. 43PPCh. 3 - Prob. 44PPCh. 3 - Prob. 45PPCh. 3 - Prob. 46PPCh. 3 - Prob. 47PPCh. 3 - Prob. 48PPCh. 3 - Prob. 49IPCh. 3 - Prob. 50IPCh. 3 - Prob. 51IPCh. 3 - Prob. 52IPCh. 3 - Prob. 53IPCh. 3 - Prob. 54IPCh. 3 - Prob. 55IPCh. 3 - Prob. 56IPCh. 3 - Prob. 57IPCh. 3 - Prob. 58IPCh. 3 - Prob. 59IPCh. 3 - Prob. 60IPCh. 3 - Prob. 61IPCh. 3 - Prob. 62IPCh. 3 - Prob. 63IPCh. 3 - Prob. 64IPCh. 3 - The bengamides are a series of natural products...Ch. 3 - Prob. 66IPCh. 3 - Prob. 67IPCh. 3 - Prob. 68IPCh. 3 - Prob. 69IPCh. 3 - Prob. 70CPCh. 3 - Prob. 71CPCh. 3 - Prob. 72CPCh. 3 - Prob. 73CP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY