PHYSICS:PRINCIPLES W/ APPLICATIONS
7th Edition
ISBN: 2818440037979
Author: GIANCOLI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A projectile is launched from ground level to the top of a
cliff which is 195 m away and 135 m high (see Fig. 3–56).
If the projectile lands on top of the cliff 6.6 s after it is
fired, find the initial velocity of the projectile (magnitude
and direction). Neglect air resistance.
Landing point
135 m
vo
FIGURE 3–56
Problem 70.
195 m
(II) A passenger on a boat moving at 1.70 m/s on a still lake
walks up a flight of stairs at a speed of 0.60 m/s, Fig. 3–43.
The stairs are angled at 45° pointing in the direction of
motion as shown. What is the velocity of the passenger rel-
ative to the water?
0.60 m/s y
45°
V = 1.70 m/s
FIGURE 3-43 Problem 42.
63. The cliff divers of Acapulco push off horizontally from
rock platforms about 35 m above the water, but they must
clear rocky outcrops at water level that extend out into the
water 5.0 m from the base of the cliff directly under their
launch point. See Fig. 3-44. What minimum pushoff speed
is necessary to clear the rocks? How long are they in
the air?
35 m
5.0 m
FIGURE 3-44 Problem 63.
Chapter 3 Solutions
PHYSICS:PRINCIPLES W/ APPLICATIONS
Ch. 3 - A small heavy box of emergency supplies is dropped...Ch. 3 - One car travels due east at 40 km/h, and a second...Ch. 3 - Can you conclude that a car is not accelerating if...Ch. 3 - Give several examples of an object's motion in...Ch. 3 - Can the displacement vector for a particle moving...Ch. 3 - During baseball practice, a player hits a very...Ch. 3 - If V =V 1+V 2 , is V necessarily greater than V1,...Ch. 3 - Two vectors have length V1=3.5km and V2=4.0km ....Ch. 3 - Can two vectors, of unequal magnitude, add up to...Ch. 3 - Can the magnitude of a vector ever (a) equal, or...
Ch. 3 - Prob. 10QCh. 3 - How could you determine the speed a slingshot...Ch. 3 - Prob. 12QCh. 3 - Prob. 13QCh. 3 - Prob. 14QCh. 3 - A projectile is launched at an upward angle of 300...Ch. 3 - Prob. 16QCh. 3 - Two cannonballs, A and B, are fired from the...Ch. 3 - 18. A person sitting in an enclosed train car,...Ch. 3 - Prob. 19QCh. 3 - Prob. 20QCh. 3 - Prob. 21QCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - Prob. 3MCQCh. 3 - Prob. 4MCQCh. 3 - A baseball player hits a ball that soars high into...Ch. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Which of the three kicks in Fig. 3-32 is in the...Ch. 3 - A baseball is hit high and far. Which of the...Ch. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - A car travels 10 m/s east. Another car travels 10...Ch. 3 - A car is driven 225 km west and then 98 km...Ch. 3 - A delivery truck travels 21 blocks north, 16...Ch. 3 - If Vx=9.80 units and Vy=6.40 units, determine the...Ch. 3 - Graphically determine the resultant of the...Ch. 3 - V is a vector 24.8 units in magnitude and points...Ch. 3 - Vector V is 6.6 using long and points along the...Ch. 3 - Figure 3-33 shows two vectors, A and B , whose...Ch. 3 - Prob. 8PCh. 3 - Three vectors are shown in Fig. 3-35 Q. Their...Ch. 3 - (a) given the vectors A and B shown in Fig. 3-35,...Ch. 3 - Determine the vector AC , given the vectors A and...Ch. 3 - For the vectors shown in Fig. 3—35, determine (a)...Ch. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - 17. (l) A tiger leaps horizontally from a...Ch. 3 - 18. (l) A diver running 2.5 m/s dives out...Ch. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - 21. (Il) A ball thrown horizontally at 12.2 m/s...Ch. 3 - (Il) A football is kicked at ground level with a...Ch. 3 - Prob. 23PCh. 3 - You buy a plastic dart gun,and being a clever...Ch. 3 - Prob. 25PCh. 3 - Extreme-sports enthusiasts have been known to jump...Ch. 3 - A projectile is fired with an initial speed of...Ch. 3 - An athlete performing a long jump leaves the...Ch. 3 - A shot-putter throws the "shot" (mass = 7.3 kg)...Ch. 3 - Prob. 30PCh. 3 - A rescue plane wants to drop supplies to isolated...Ch. 3 - Suppose the rescue plane of Problem 31 releases...Ch. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Suppose the kick in Example 3—6 is attempted 36.0...Ch. 3 - Revisit Example 3—7, and assume that the boy with...Ch. 3 - A stunt driver wants to make his car jump over 8...Ch. 3 - Prob. 38PCh. 3 - Huck Finn walks at a speed of 0.70 m/s across his...Ch. 3 - Determine the speed of the boat with respect to...Ch. 3 - Two planes approach each other head-on. Each has a...Ch. 3 - A passenger on a boat moving at 1.70 m/s on a...Ch. 3 - A person in the passenger basket of a hot-air...Ch. 3 - 44. (Il) An airplane is heading due south at a...Ch. 3 - In what direction should the pilot aim the plane...Ch. 3 - 46. (Il) A swimmer is capable of swimming 0.60 m/s...Ch. 3 - (a) At what upstream angle must the swimmer in...Ch. 3 - 48. (Il) A boat, whose speed in still water is...Ch. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Two cars approach a street comer at right angles...Ch. 3 - Prob. 52GPCh. 3 - Prob. 53GPCh. 3 - A light plane is headed due south with a speed...Ch. 3 - Prob. 55GPCh. 3 - Prob. 56GPCh. 3 - 57. Apollo astronauts took a "nine iron" to the...Ch. 3 - 58. (a) A long jumper leaves the ground at above...Ch. 3 - Prob. 59GPCh. 3 - Prob. 60GPCh. 3 - Prob. 61GPCh. 3 - Prob. 62GPCh. 3 - Prob. 63GPCh. 3 - Prob. 64GPCh. 3 - When Babe Ruth hit a homer over the 8.0-m-high...Ch. 3 - At serve, a tennis player aims to hit the ball...Ch. 3 - Prob. 67GPCh. 3 - Prob. 68GPCh. 3 - 69. A boat can travel 2.20 m/s in still water. (a)...Ch. 3 - Prob. 70GPCh. 3 - Prob. 71GPCh. 3 - A rock is kicked horizontally at 15 m/s from a...Ch. 3 - Prob. 73GPCh. 3 - A ball is shot from the top of a building with an...Ch. 3 - If a baseball pitch leaves the pitcher's hand...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (II) Figure 3–33 shows two vectors, A and B, whose magni- tudes are A = 6.8 units and B = 5.5 units. Determine Č if (a) Č = Ã + B, (b) Č = Ā – B, (c) Č = B – Ā. Give the magnitude and direction for each. - y В FIGURE 3–33 Problem 7.arrow_forward(II) A rescue plane wants to drop supplies to isolated moun- tain climbers on a rocky ridge 235 m below. If the plane is traveling horizontally with a speed of 250 km/h (69.4 m/s), how far in advance of the recipients (horizontal distance) must the goods be dropped (Fig. 3–38)? Vx0 "Dropped" (vyo=0) 235 m FIGURE 3-38 Problem 31.arrow_forwardSpymaster Chris, flying a constant 208 km/h horizontally in a low-flying helicopter, wants to drop secret documents into her contact's open car which is traveling 156 km/h on a level highway 78.0 m below. At what angle (with the hori- zontal) should the car be in her sights when the packet is released (Fig. 3–55)? _208 km/h 78.0 m 156 km/h FIGURE 3-55 Problem 67.arrow_forward
- (III) Two cars approach a street corner at right angles to each other (Fig. 3–47). Car 1 travels at a speed relative to Earth vIE = 35 km/h, and car 2 at v2E = 55 km/h. What is the relative 2 velocity of car 1 as seen by car 2? What is the velocity of car 2 relative to car 1? 2E 1E FIGURE 3-47 Problem 51.arrow_forwardIn the figure, you throw a ball toward a wall at speed 23.0 m/s and at angle θ0 = 36.0˚ above the horizontal. The wall is distance d = 21.0 m from the release point of the ball. (a) How far above the release point does the ball hit the wall? What are the (b) horizontal and (c) vertical components of its velocity as it hits the wall?arrow_forward- (II) A child, who is 45 m from the bank of a river, is being carried helplessly downstream by the river's swift current of 1.0 m/s. As the child passes a lifeguard on the river's bank, the lifeguard starts swimming in a straight line (Fig. 3–46) until she reaches the child at a point downstream. If the lifeguard can swim at a speed of 2.0 m/s relative to the water, how long does it take her to reach the child? How far downstream does the lifeguard intercept the child? 1.0 m/s 2.0 m/s - 45 m FIGURE 3-46 Problem 49.arrow_forward
- The cliff divers of Acapulco push off horizontally from rock platforms about 35 m above the water, but they must clear rocky outcrops at water level that extend out into the water 5.0 m from the base of the cliff directly under their launch point. See Fig. 3-53. What minimum pushoff speed is neces- sary to clear the rocks? How long are they in the air? 35 m |5.0 m| FIGURE 3-53 Problem 64.arrow_forward(II) Extreme-sports enthusiasts have been known to jump off the top of El Capitan, a sheer granite cliff of height 910 m in Yosemite National Park. Assume a jumper runs horizontally off the top of El Capitan with speed 4.0 m/s and enjoys a free fall until she is 150 m above the valley floor, at which time she opens her parachute (Fig. 3–37). (a) How long is the jumper in free fall? Ignore air resis- tance. (b) It is important to be as far away from the cliff as possible before opening the parachute. How far from the cliff is this jumper when she opens her chute? 4.0 m/s 910 m 150 m FIGURE 3-37 Problem 26.arrow_forward2-27. Derive the equation for the range of a projectile fired on level ground, u* sin 20 R where R is the range, 0 is the angle of elevation, and u is the initial velocity. Show that the maximum range is achieved when 0 = 45°.arrow_forward
- (I) Huck Finn walks at a speed of 0.70 m/s across his raft (that is, he walks perpendicular to the raft's motion relative to the shore). The heavy raft is traveling down the Mississippi River at a speed of 1.50 m/s relative to the river bank (Fig. 3–42). What is Huck's velocity (speed and direction) relative to the river bank? 0.70 m/s River current FIGURE 3-42 Problem 39.arrow_forward(I) A car is driven 225 km west and then 98 km southwest (45°). What is the displacement of the car from the point of origin (magnitude and direction)? Draw a diagram.arrow_forward(II) A person in the passenger basket of a hot-air balloon throws a ball horizontally outward from the basket with speed 10.0 m/s (Fig. 3–44). What initial velocity (magni- tude and direction) does the ball have relative to a person standing on the ground (a) if the hot-air balloon is rising at 3.0 m/s relative to the ground during this throw, (b) if the hot-air balloon is descending at 3.0 m/s relative to the ground? 10.0 m/s FIGURE 3-44 Problem 43.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY